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Executive Summary
The Assuring Autonomy International Programme (AAIP) has the ambitious goal of delivering 
a Body of Knowledge (BoK) for the assurance of Robotics and Autonomous Systems (RAS). 
The demonstrator project “Assuring Long-term Autonomy through Detection and Diagnosis 
of Irregularities in Normal operation (ALADDIN)” (including project partners University 
College London (UCL) and National Oceanography Centre (NOC) and project stakeholders 
Lloyd’s Register (LR), Maritime and Coastguard Agency (MCA) and Blue Ocean Monitoring 
(BOM)) have contributed to the drafting of the sections on the definition and verification of 
sensing and understanding requirements for RAS and the identification of sensing (and 
understanding) deviations. To achieve this, new methods for the detection and identification 
of adverse behaviour for Marine Autonomous Systems (MAS) have been introduced. Then, 
they are implemented on the command-control infrastructure for over-the-horizon 
operations of MAS (C2) – itself a RAS – developed by the NOC for verification. Additional field 
tests have also been implemented to validate the developed anomaly detection and fault 
diagnostics models.

The aim of WP1 was to define healthy and anomalous behaviour of RAS with appropriate 
vocabulary, identify data availability and sources for RAS deployments, with a focus on MAS, 
and outline the project steering direction for the following WPs. Specific datasets of 
deployments of a range of MAS technologies have been selected to be used in the other WPs.

Based on the identified datasets from WP1, an improved Bidirectional Generative Adversarial 
Networks (BiGAN) with assistive hints has been developed in WP2 to detect adverse 
behaviour of MAS. The developed anomaly detection system requires only normal 
operational data and do not require additional labelling efforts and can alert status that 
deviates from the system’s normal operational pattern. Such features make it suitable for RAS 
operating in highly dynamic and uncertain environments such as oceans.

Furthermore, in WP3, supervised learning models have been developed to detect faults 
within a specific MAS domain with datasets covering the potential failure modes. It was 
concluded that although such models can achieve high fault diagnostics performance when 
the test platforms operate very similarly to the training platforms, it has limited capability of 
generalising across different MAS domains. To address the issue, the WP proposes a novel 
fault diagnostics deep learning model to diagnose faults for MAS via domain adaption and 
transfer learning, based upon the work developed in WP1. The proposed model, i.e., Marine 
Autonomous System Net (MASNet), is applied to address the challenging fault diagnostics 
tasks for distinct types of MAS that are under-observed and remotely operated in different 
regions and tasks by different institutions.

Two field tests, funded by the European Commission, have been implemented to test the 
anomaly detection and fault diagnostics methods developed in this project. Additionally, the 
developed tools have been implemented in NOC’s command and control system for 
operational usage. Strategies to improve the robustness of ML systems running in production 
have also been discussed in the verification WP. The project management details and 
deliverables are summarised in the final section.
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1. Requirements Definition

1.1. Introduction

The Assuring Autonomy International Programme (AAIP) has the ambitious goal of delivering 
a Body of Knowledge (BoK) for the assurance of Robotics and Autonomous Systems (RAS). 
The content of the BoK must be comprehensive, cross-domain, cross-technology and cross-
application. The guidance should be as general as possible, but providing domain-specific 
guidance when required and use established assurance approaches.

The BoK will cover four main areas to support core principles for developing, assuring and 
regulating RAS:

• Defining the required behaviour - Defining what it means for the RAS to be 'safe';
• Implementing a RAS to provide the required behaviour – Demonstrating the 

sufficiency of the implementation;
• Understanding and controlling deviations from required behaviour – Identifying and 

controlling sources of deviation;
• Gaining approval for operation of RAS – Gaining approval for operation in the specified 

environment from the relevant regulatory authority.

The demonstrator project “Assuring Long-term Autonomy through Detection and Diagnosis 
of Irregularities in Normal operation (ALADDIN)” will contribute to the drafting of the 
following sections of the BoK:

• 2.2.1.1 – Defining sensing requirements,
• 2.2.1.2 – Defining understanding requirements,
• 2.2.4.1 – Verification of sensing requirements,
• 2.2.4.2 – Verification of understanding requirements,
• 3.1.1 – Identifying sensing deviations

As a result of the focus on sensing and understanding requirements and deviations, project 
ALADDIN’s expected greatest contribution will be in the field of smart fault diagnostics for 
RAS.

Thanks to the project partners and stakeholders’ expertise, the case study of Marine 
Autonomous Systems (MAS) will be used to contribute to the BoK, with the verification 
possible thanks to field tests of real Autonomous Underwater Vehicles (AUVs). In particular, 
the main RAS that will be used in the project is the new common Command-Control (C2) and 
data processing system for the over-the-horizon operation of MAS that is being developed by 
the National Oceanography Centre (NOC) as part of the NERC/ISCF-funded project Oceanids1.

The first Work Package (WP) is instrumental in collating the different information required by 
further WPs. The aim of WP1 was to define healthy and anomalous behaviour of RAS with 
appropriate vocabulary, identify data availability and sources for RAS deployments, with a 
focus on MAS, and outline the project steering direction for the following WPs. Each of these 

1 https://www.noc.ac.uk/projects/oceanids

https://www.noc.ac.uk/projects/oceanids
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points is covered in the following sections. Section 1.2 introduces the terminology for the 
condition monitoring of MAS. Section 1.3. covers the sources of the remote sensing and RAS 
deployment datasets that can be used in the remainder of the project. Section 1.4 presents a 
brief overview of state-of-the-art fault diagnostics methods, including a research gap. Section 
1.5 describes the selected steering direction for the project. Section 1.6 summarises the 
conclusions of WP1 and presents the outline of WPs 2-4.

1.2. Definition of the Conditional Status of Robotic and Autonomous 
Systems

Vocabulary
The formal definition of a vocabulary to describe healthy and anomalous operating conditions 
for RAS is critical to introduce sensing and understanding frameworks for fault diagnostics 
that are general, transferable and technology agnostic. Rather than creating a completely new 
vocabulary, suitable existing terminology has been identified from a number of sources, 
including regulators and quality control systems, mostly from sectors other than maritime 
autonomy.

Regulators – Marine Autonomous Systems

Firstly, not only does no accepted vocabulary currently exist for the condition monitoring of 
MAS, but even accepted terminology to refer to them is currently lacking. In the literature, 
MAS are also referred to as Unmanned Marine Systems (UMS) or Unmanned Marine Vehicles 
(UMV). Until general regulations are developed for MAS in general by the International 
Maritime Organization (IMO), which will then be accepted as the standard globally, the 
acronym “MAS”, which is the standard for the Natural Environment Research Council in the 
UK, will be adopted in project ALADDIN. 

The Maritime Safety Committee of the IMO is currently running a scoping exercise to draft 
new regulations for the operation of Maritime Autonomous Surface Ships (MASS) [1]. From 
the draft, it is clear that the command and control infrastructure that is currently being 
developed at the NOC for the over-the-horizon operation of their fleet of MAS (in itself a RAS 
with human-in-the-loop control possible) will need to be referred to as a Remote Control 
Centre (RCC) once the IMO vocabulary is finalised and accepted.

Because of the present lack of regulations, the fit of MAS within the legal framework is not 
clear. Many MAS may not be considered to be included in the definition of “ship”; hence, they 
may not enjoy states’ rights of navigation under the United Nations Convention of the Law at 
Sea (UNCLOS) [2]. Veal, at al. [2] suggest that the international legal framework delegates the 
decision of whether a MAS is a ship or not to the flag state’s national laws, with the outcome
binding on other states. The MAS falling under the definition of ship will need to comply with 
the current regulatory framework for shipping, with compliance becoming harder with 
increasing level of autonomy. The MAS not falling under the definition of ship will have 
navigational rights in the areas beyond national jurisdiction, but there are doubts about their 
navigational rights in the jurisdictional zones of other states.

Classification societies, which provide rules and standards for the design and construction of 
complex engineering systems like ships and then certify them as safe, have started to develop 
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regulations specific to MAS, anticipating the IMO who have only recently started to meet to 
propose new rules. As AUVs have been available for the past thirty years, there are more sets 
of rules for their classification at present, e.g. DNV-GL’s Underwater Technology, Part 5, 
Chapter 8 [3]. The regulations define the documentation, survey and testing requirements, 
the principles for the design and construction of AUVs and control and automation philosophy. 
The last section is particularly interesting as it requires pre-planned missions to be entered 
(currently by human operators) and stored and the parameters needed for the operation of 
the vehicle monitored and a failure report sent to the operator as well as saved on board in 
case the transmission is not possible. If the failures cannot be corrected, the mission will need 
to be aborted. The tools and sensors that should be used for the data connection and 
navigation are also described. However, the regulation on the remote and on-board condition 
monitoring of components are not specific and detailed.

Lloyd’s Register, a global classification society and part of the project steering committee, 
developed the first design code for MAS in 2017 [4]. The code defines autonomy levels for 
their operation that range from manual, level 0, to fully autonomous decisions, level 6. As 
part of the nomenclature, the definition of “Reasonably Foreseeable Operating Conditions” 
is particularly interesting for project ALADDIN, as MAS’ adverse behaviour due to extreme 
environmental disturbances, e.g. strong ocean eddies or currents for the smaller MAS, may 
fall outside of this definition. Since rules specific to condition-based maintenance and fault-
tolerant RAS behaviour are not yet covered as part of the code, the outcomes of project 
ALADDIN have the potential to contribute to future versions of the document.

Regulators – Condition Monitoring

Vocabulary specific to condition monitoring are published by the International Federation of 
Automatic Control (IFAC) and the International Organization for Standardisation (ISO) 
standards. 

The condition monitoring terminology for technical processes for the IFAC was first 
introduced by the Safety Process Technical Committee and reported in [5]. Identical 
vocabulary with the addition of some terms specific to machinery and road vehicles can be 
found in the ISO standards “13372:2012(en): Condition monitoring and diagnostics of 
machines” [6] and “ISO 26262-1:2018(en): Road vehicles — Functional safety” [7], 
respectively. According to this vocabulary, we can define the following states and signals:

• Standard conditions or the baseline, indicating the system operating as intentionally 
designed;

• Anomaly or abnormality as a deviation from standard conditions;
• Malfunction as an intermittent irregularity in the fulfilment of a system’s desired 

function;
• Error as the deviation between a measured or computed value (of an output variable) 

and the true, specified or theoretically correct value;
• Disturbance as an unknown (and uncontrolled) input acting on a system;
• Perturbation as an input acting on a system, which results in a temporary departure 

from the current state, i.e. the parametric and dynamic uncertainty in the model of 
the system;
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• Fault as an unpermitted deviation of at least one characteristic property or parameter 
of the system from the acceptable / usual / standard condition;

• Failure as the permanent interruption of a system's ability to perform a required 
function under specified operating conditions;

• Failure mode as the observable manifestation of a system fault;
• Fault progression as the characterization of the change in the observability of a fault 

over time;
• Sign as a characteristic parameter of a signal, which shows information about a state;
• Syndrome as a group of signs or symptoms that collectively indicate or characterize an 

abnormal condition.

Fault types can be found and classified during the design of a RAS through a Failure Mode and 
Effects Analysis (FMEA), which describes the process of reviewing as many components, 
assemblies, and subsystems as possible to identify potential failure modes in a system and 
their causes and effects.

Additionally, building on the IFAC and ISO frameworks and taking inspiration from the medical 
field and the Aeronautical Design Standard (ADS), Society of Automotive Engineers (SAE) 
standards, Lloyds Register has adopted the following vocabulary to describe functions for 
digital twins used in asset health management [8].

Anomaly detection differentiates between nominal and abnormal operating conditions. The 
portion of operational data (time series data) indicative of the anomaly will be further 
analysed to determine the existence and narrow the type of faults and failure condition. 
Hence, this requires the definition of a baseline, i.e. a descriptor or group of descriptors which 
provides a criterion of the normal behaviour of the system under various process states.

Fault detection refers to the algorithmic processing that builds on the results of anomaly 
detection to evaluate and identify the specific failure mode (i.e. fault is an incipient failure), 
the affected replaceable part(s) and its estimated severity (i.e. level of degradation/damage 
experienced by the affected part). 

Diagnostics describes the concurrent processing and analysis of several faults, degradation in 
progress, including reasoning at the sub-assembly, equipment, sub-system, system level to 
provide an integrated health insight. Hence, fault diagnostics follows fault detection and 
includes fault isolation, i.e. the determination of the kind, location and time of detection of a 
fault., and identification, i.e. the determination of the size and time-variant behaviour of a 
fault.

Prognostics involves predicting the time progression of a specific failure mode from its 
incipience (i.e. a fault) to the estimated time of the part’s failure.  Given that no part exists in 
isolation and that there is a multitude of influences at the sub-assembly, equipment, system, 
asset level, including operational, maintenance i.e. real-world factors that can be technically 
challenging to represent, prognostics will include the abstraction and analysis of the following

1. existing failure modes and their effect on the part deterioration rate;
2. representation of different stressors (i.e. factors that drive the failure mode);
3. knowledge and initiation criteria of future failure modes;
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4. interrelationship between failure modes and their effect on the part deterioration 
rates;

5. the effects of servicing and maintenance on part degradation;
6. some form of uncertainty representation and management – meaning the knowledge 

of the conditions (context) and assumptions underpinning the prognosis. 

The last point is important given that prognostics deals with the ability to generate insights 
on damage that is yet to happen.

Target granularity. The more detailed (granular) an asset can be represented, the better 
clarity on the maintenance and operational decisions. Ideally the granularity should be 
directed at the “replaceable parts level” where inspections, servicing and maintenance 
(replacement) actions are performed. A higher level of abstraction i.e. parts sub-assembly, 
equipment level, sub-system level will be useful but will require some degree of 
disambiguation (investigation) from the crew and engineers in defining the 
maintenance/operational actions.

Failure Coverage. Different replaceable parts, structural components and elementary 
functions will be susceptible to different, unique failure modes that dictate their consequent 
corrective and maintenance actions. Knowing the exact failure coverage of a digital twin 
enables the estimation of its value on both failure avoidance (i.e. cost saving by avoiding a 
real-world failure) and maintenance/servicing extension (i.e. cost deferment of inspections 
and overhauls given the absence of failure condition).

It is clear that the scope of project ALADDIN will be limited to fault detection and diagnostics, 
i.e. describing and verifying the sensing and understanding requirements and deviations for 
RAS. Specific vocabulary for failure modes of underwater gliders, which will represent the 
main case study of the project, can be found in [9]. For other RAS, these will need to be 
replaced with technology-specific failure modes as obtained from the FMEA by the designer.

Quality Control Systems – Scientific Community

Quality Control (QC) systems are already being extensively used by the oceanography 
community to characterise possible errors or problems with the measured scientific data. A 
comparison of different oceanographic quality flag schemas can be found in the Ocean Data 
View2. Additionally, the Natural Environment Research Council (NERC) have developed a 
dedicated QC vocabulary, which includes also operational phases for underwater gliders3. 
Similar solutions have been implemented by other operators, with the QC manual for Argo 
floats being extremely interesting, as it includes common instrument failure types 4. This 
terminology has been used as the basis of reliability studies for underwater gliders [9], where 
specific vocabulary for faults on AUVs is introduced.

2 https://odv.awi.de/documentation/
3 http://vocab.nerc.ac.uk/collection/S28/current/all/
4 https://archimer.ifremer.fr/doc/00228/33951/32470.pdf, Appendix 4.1

https://archimer.ifremer.fr/doc/00228/33951/32470.pdf
http://vocab.nerc.ac.uk/collection/S28/current/all/
https://odv.awi.de/documentation/
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QC flags are also used in fields other than oceanography. For instance, the satellite data 
provided by Copernicus is classified in 44 categories to characterise the type of land cover in 
the CORINE Land Cover (CLC) Inventory5,6. Similarly, 19 classes are used in the BigEarthData 
training set7, although everything seaward of the lowest tide limit is simply classified as “Sea 
and ocean” class 52.

RAS Adverse Behaviour Labelling Policy
Metadata

Including the status of RAS conditions as metadata, i.e. data providing information on other 
data, is desirable, as it can help operators identify anomalous behaviour and improve fault 
diagnostics solutions, whilst informing end users of the collected data of potential problems. 
A particularly interesting example is cruise reports for oceanographic missions, e.g. as shown 
on the British Oceanographic Data Centre (BODC) portal8, where the reports contain a very 
brief summary of main events with a time stamp.

Levels of Annotation

The metadata annotation of healthy or anomalous operating conditions would need to span 
four levels:

1. The upmost level would consist in a classification of a whole deployment as either 
presenting completely normal conditions or some adverse behaviour for the RAS. This 
would facilitate the use of the dataset for further training, validation or test of fault 
diagnostics methods.

2. The broad annotation can be further refined on a lower level of local segmentations 
of phases of the deployment, e.g. a number of dives for AUVs. This would enable a 
quicker recognition of which portions of the dataset to use for training and which to 
use for testing purposes.

3. It is then possible to annotate individual phases of the deployment, e.g. individual 
dives for AUVs, as presenting either normal or adverse operating conditions.

4. Finally, individual operational phases can also be annotated in detail to characterise 
the data on the lowest level of time steps.  

1.3. Sources for the Sensing Data of Marine Autonomous Systems

Vehicle Data
Data from real RAS deployments is fundamental to train, validate and test fault diagnostics 
algorithms. Project ALADDIN will focus on the case study of MAS. Hence, here is a list of 

5 https://land.copernicus.eu/pan-european/corine-land-cover
6 https://land.copernicus.eu/user-corner/technical-library/copy_of_Nomenclature.pdf
7 http://bigearth.net/#
8 https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jc152.pdf

https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jc152.pdf
http://bigearth.net/
https://land.copernicus.eu/user-corner/technical-library/copy_of_Nomenclature.pdf
https://land.copernicus.eu/pan-european/corine-land-cover
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publicly available repositories with data from MAS deployments, inclusive of the engineering 
data needed to track the RAS’ state.

British Oceanographic Data Centre

The BODC contains one of the largest data repositories for deployments of scientific AUVs 
and small MASS9. In particular, the data from some projects, like AlterEco10, ElletLine11 and 
MASSMO12, includes data from multiple MAS operating in the same area, which is particularly 
interesting for studies involving multiple RAS. 

The dataset includes data from the following types of MAS:

• Seaglider, Deepglider and Slocum underwater gliders in a range of versions and 
sensory payloads,

• Autonaut small MASS,
• AutoSUB Long-Range (ALR), hybrid long-range AUVs.

Integrated Marine Observing System

Australia’s Integrated Marine Observing System (IMOS) contains data of deployments of 
underwater gliders around Australia’s waters13. Although the datasets that are published on 
the website do not include the engineering data, it is possible to contact the IMOS office for 
the information, which will readily share engineering data for the requested deployments.

IFREMER

France’s IFREMER includes a very similar data portal to the BODC and IMOS, although the 
information is in French14.

PLOCAN and SOCIB

Spain’s PLOCAN and SOCIB have very similar data portals that are easily accessible15,16. The 
datasets are particularly interesting because they refer to deployments in warm, tropical 
waters, where biofouling is a stronger problem.

Although there are other national and regional datasets for oceanographic deployments, the 
BODC, IMOS, IFREMER, PLOCAN and SOCIB’s are representative examples.

9 https://www.bodc.ac.uk
10 https://projects.noc.ac.uk/altereco/
11 https://projects.noc.ac.uk/ExtendedEllettLine/frontpage
12 https://projects.noc.ac.uk/massmo/frontpage
13 https://imos.org.au/data
14 http://data.ifremer.fr
15 http://obsplatforms.plocan.eu
16 http://thredds.socib.es/thredds/catalog/auv/glider/catalog.html

http://thredds.socib.es/thredds/catalog/auv/glider/catalog.html
http://obsplatforms.plocan.eu/
http://data.ifremer.fr/
https://imos.org.au/data
https://projects.noc.ac.uk/massmo/frontpage
https://projects.noc.ac.uk/ExtendedEllettLine/frontpage
https://projects.noc.ac.uk/altereco/
https://www.bodc.ac.uk/
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EGO-network

The Everyone’s Gliding Observatory (EGO) network is a global database of publicly available 
deployment data from underwater gliders17. Although only scientific data in netCDF format is 
readily available, the engineering data can be obtained by contacting the principal 
investigator of each deployment.

Datasets of MASS

At present, only prototype MASS have been developed. At the lower Technology Readiness 
Level (TRL) scale, research institutions have been experimenting with increasing levels of 
technology on existing platforms, e.g. by the Norwegian Technical University’s (NTNU) Cyber-
Physical Systems Laboratory 18 , 19 . At the higher TRL scale, Promare and IBM have been 
developing a fully autonomous, solar-powered sailing boat, the Mayflower, to transverse the 
oceans20 and Ocean Infinity has been developing a fleet of 15 MASS for the monitoring and 
mapping of the oceans21. However, developers of small MASS for defence applications, like 
L3Harris-ASV22, have developed most vehicles to date.

Nevertheless, no dataset for MASS deployments is currently available, other than for the 
smallest wave-powered Autonaut and Wavegliders for oceanographic applications.

Complementary Remote-Sensing Data
Satellite Observations

Copernicus is the European Union's Earth Observation Programme, combining data from 
satellite, ground-based, airborne and seaborne measurement systems23. The information 
services provided are open and freely available to all users.  The system has a dedicated 
service specific for marine data and products24, e.g. assimilated models including Forecast 
Ocean Assimilated Model (FOAM) and Atlantic Margin Model (AMM) 1525. The satellite data 
provides altimetry, chlorophyll, sea surface temperature, resolving mesoscale features such 
as eddies and fronts.

17 https://www.ego-network.org/dokuwiki/doku.php
18 https://www.ntnu.no/blogger/cpslab/autonomous-ships/
19 https://www.ntnu.edu/autoferry
20 https://mas400.com
21 https://oceaninfinity.com
22 https://www.asvglobal.com
23 https://www.copernicus.eu/en/access-data
24 https://marine.copernicus.eu/
25 https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWES
TSHELF_ANALYSIS_FORECAST_PHYS_004_001_b

https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b
https://marine.copernicus.eu/
https://www.copernicus.eu/en/access-data
https://www.asvglobal.com/
https://oceaninfinity.com/
https://mas400.com/
https://www.ntnu.edu/autoferry
https://www.ntnu.no/blogger/cpslab/autonomous-ships/
https://www.ego-network.org/dokuwiki/doku.php
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Additionally, polar data and algorithms26 have been developed as part of the Extreme Earth
EU project27. The data includes a very large training set of satellite data, labelled with ice types 
in both the European Arctic and Greenland28. The aim is to produce maps showing different 
ice types for maritime users.

Seafloor and Water Column Observations

In addition to underwater gliders, the water column of the oceans is observed through a 
global network of profiling floats, the Argo floats 29 . There are many publicly available
repositories for seafloor and water column data sets:

• EMODnet 30 , with portals that include the bathymetry and physics of the ocean 
column31, with the data likely to be most useful in relation to underwater gliders.

• The European Multidisciplinary Seafloor and water column Observatory (EMSO)32

includes data from regional mooring and fixed platform observatories around Europe, 
from North East Atlantic, through the Mediterranean, to the Black Sea.  The NOC 
operate the Porcupine Abyssal Plain (PAP) mooring33.  

• The European JERICO project provides free access to European coastal data34.
• SeaDataNet35 contains data and vocabularies that are split into three sets: navigation, 

hydrography and metrology, and bathymetry.
• ConnectingGEO 36 links the observation data with the scientific and technology 

communities.

The Google Dataset Search37 feature provides multiple results for Conductivity, Temperature 
and Density (CTD) data, glider data and data from different types of data acquisition systems.

26 https://portal.polartep.io/ssoportal/pages/login.jsf
27 http://earthanalytics.eu/about.html
28 https://drive.google.com/file/d/1QYpekbD69V_9tK3YI1aOSdP0VV5gKWhQ/view
29 https://argo.ucsd.edu/
30 https://www.emodnet.eu/en/portals
31 http://www.emodnet-physics.eu/Map/
32 http://emso.eu/#
33 http://data.emso.eu/
34 https://www.jerico-ri.eu/
35 https://www.seadatanet.org/
36 http://www.connectingeo.net/
37 https://datasetsearch.research.google.com/

https://datasetsearch.research.google.com/
http://www.connectingeo.net/
https://www.seadatanet.org/
https://www.jerico-ri.eu/
http://data.emso.eu/
http://emso.eu/
http://www.emodnet-physics.eu/Map/
https://www.emodnet.eu/en/portals
https://argo.ucsd.edu/
https://drive.google.com/file/d/1QYpekbD69V_9tK3YI1aOSdP0VV5gKWhQ/view
http://earthanalytics.eu/about.html
https://portal.polartep.io/ssoportal/pages/login.jsf
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1.4. Overview of Fault Diagnostics Methods

Fault diagnostics and prognostics methods can be classified as rule- or knowledge-based, 
model-based or data-driven [10]. 

Rule-Based Methods
Rule-based diagnostics are an approach that relies on bespoke heuristics, usually in the form 
of if-then statements, obtained from designers’ observations of the system [11]. Hence, they 
tend to be very problem-specific (and thus with poor generalisation), require significant effort 
from the designers and scale poorly to large problems. 

Rule-based methods have been used for years for the fault diagnostics of engineering systems. 
The authors successfully designed and implemented a rule-based solution for the detection 
and identification of wing loss on underwater gliders [12]. However, project ALADDIN will 
focus on other approaches.

Model-Based Methods
Model-based diagnostics use a model constructed from in-depth knowledge of the system 
dynamics for fault detection, isolation and identification, typically by analysing the residuals 
between the actual and estimated values of each sensor. Model-based solutions are standard 
condition monitoring tools on a large range of engineering systems, e.g. aircraft [13]. The 
authors successfully introduced an effective model-based system for the detection and 
isolation of the loss of one wing [12] and high levels of biofouling [14] and on underwater 
gliders.

Over the past two decades, model-based fault diagnostics methods have evolved into the 
development of digital twins, i.e. the software representation of a physical asset, system or 
process designed to detect, prevent, predict, and optimise performance through real-time 
analytics to deliver business value, for improved condition monitoring of complex engineering 
systems, such as ships [15]. The concept of digital twin can have important implications for 
the condition monitoring of complex RAS.

Data-Driven Methods

Building on the recent advances in machine learning, data-driven methods for fault 
diagnostics and prognostics have been gaining in popularity thanks to their generality and 
scalability to even the largest problems (in fact, accuracy improves with increasing dataset 
size). Amongst the many reviews of data-driven solutions for intelligent maintenance systems, 
we refer the reader to Ellefsen, et al. [16], who focus on the application to MAS, and three 
more general, but more detailed studies [17]–[19]. 

From these studies, it is possible to differentiate between first-generation machine learning 
solutions, such as support vector machines, Gaussian processes and classification and 
regression trees, to second-generation deep learning methods, based on neural networks 
with many deep layers. Since approximately 2015, deep learning has outperformed other 
classical machine learning solutions for complex classification and regression tasks, as such 
voice and pattern recognition, thanks to its ability to extract useful features from and to scale 
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efficiently to extremely large datasets. Hence, here is a list of the deep learning methods that 
have been used for fault diagnostics and prognostics tasks to date.

• Restricted Boltzmann Machine, an undirected bipartite graphical model used as 
generative models which learn a reconstructed version of the input data through 
stochastic processing units. Two typical deep learning examples are 

o Deep belief networks,
o Deep Boltzmann machines.

• Autoencoder, unsupervised networks that are trained to reconstruct the input on the 
output layer through two stages: an encoder learns a hidden representation of the 
data via feature extraction and then a decoder maps the hidden representation back 
to the input space to obtain a reconstruction of the data. A problem with standard 
autoencoders is the tendency to learn identity functions without extracting 
meaningful information about the data. Hence, the following alternative variants have 
been proposed to improve performance and solve the issue:

o Spare autoencoder, which include sparsity constraints to improve the 
classification task performance by increasing the likelihood that different 
categories will be easily separable.

o Denoising autoencoder, which uses Binary or Gaussian noise to corrupt the 
input for regularisation to prevent the network from learning a trivial solution.

o Contractive autoencoder, which encourage the robustness of the 
representation by penalizing the sensitivity of the features rather than 
regularizing the reconstruction. 

o Variational autoencoder, which are directed generative models that use 
variational inference framework to approximate the input data distribution. 
Variational autoencoders enable the design of generative models for large 
complex datasets, bridging the gap between deep learning and probability 
models.

• Convolutional neural network, deep discriminative networks with convolutional or 
parameter-sharing layers that have shown excellent results in processing data with 
grid-like topology, e.g. images but also time series data. 

• Recurrent neural network, which have feedback loops to remember the information 
of former units and are the most suitable for sequential data such as time-series 
applications.

• Generative Adversarial Networks (GAN), which are a powerful generative model 
consisting of two neural networks: a discriminator and a generator. The generator 
learns the distribution of the inputs and creates the fake data, whilst the discriminator 
analyses both fake and real data and evaluates them for authenticity. Performance 
improvements are achieved during training as the generator and discriminator learn 
to outsmart each other.

New algorithms are constantly being developed that are combinations of these strategies.

Research Gap
Fink, et al. [10] identify five main promising directions for the application of deep learning to 
fault diagnostics, prognostics and health management:
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• Transfer learning, which comprises methods to transfer knowledge from one domain 
to another to improve accuracy and performance, e.g. from the training to the test 
data, from simulations and experiments to the full-scale prototype of the RAS, from 
one well-understood machine to another in the fleet. In particular, interesting 
research questions include:

o “How do we deal with the case where input and output space of the source 
and target domain are not identical?”

o “How can we efficiently encode the input data to make them more 
transferable?”

o “How do we deal with the quantity imbalance between healthy and fault data?”
• Deep learning for fleet approaches, which incorporate techniques to learn and extract 

relevant informative patterns across an entire fleet of RAS from the fault patterns of 
the individual devices, considering the high variability of the system configurations 
and the dissimilarity of the operating conditions. The aim of these solutions is to 
maximise the available data and information for improved performance, as anomalies 
are rare events. The approaches that have been proposed for the monitoring and 
fleets of systems, e.g. RAS, include:

o Clustering the fleet in sub-fleets based on characteristic parameters, e.g. 
average operating regimes. The downside is that the aggregated parameters 
may not be representative of the unit’s specificities or capture all relevant 
conditions.

o Using the entire time series of condition monitoring signals to perform time 
series cluster analysis of units. However, this is affected by the curse of 
dimensionality and time series cluster analysis becomes even more challenging 
when operating conditions evolve over time.

o Developing models for the functional behaviour of the individual units and 
identifying similar devices following this learned functional behaviour. A 
requirement is for units to experience sufficient similarity in their operating 
regimes; hence, large fleets may be required to identify systems with sufficient 
similarity. 

o Performing domain alignment, or transfer learning, in the feature space of the 
different units to compensate for the distribution shift between the individual 
devices of the fleet. However, there are no guarantees that the system will 
behave in a similar way in the future.

• Generative algorithms, which learn a probabilistic distribution without any 
assumption of the induced family distribution. Hence, they can be used to enhance 
the training set to solve bias problems caused by the rarity of faults. As the technology 
is still new, improvements can be made by changing the structure of the algorithms.

• Reinforcement learning, which is a decision-making framework and seems a 
promising method to improve the planning policy for condition-based maintenance.

Physics-induced machine learning, a promising technique to induce interpretability in the 
machine learning models. Prior knowledge is integrated in the models, e.g. through dynamic 
models to generate virtual sensors [20] or generative methods [21], delivering improvements 
in terms of performance as well as interpretability. As a result, the amount of required data 
samples for training is reduced and the performance of the learning algorithms improved.
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1.5. Project Steering Direction

Based on the literature review described in the previous sections and the meetings with the 
steering committee, the selected project direction is described in the following sections.

Selected Terminology and Procedure for the Annotation of RAS Adverse Behaviour

In project ALADDIN, the ISO terminology is adopted to describe the condition monitoring 
processes, whilst the vocabulary from the draft IMO regulations is used to define MAS. In 
particular, the scope of project ALADDIN will be limited to the introduction of novel methods 
for the fault detection and diagnostics of RAS verifying the procedures with the case study of 
MAS, leading to the formulation of protocols for the assurance of the operation of RAS.

Although RAS failure mode and fault progression types can be described through a FMEA, the 
information may be commercially sensitive and unavailable to operators and tends to be very 
system specific. Hence, in project ALADDIN, the challenging problem of open-set fault 
diagnostics is addressed, i.e. the problem where the knowledge of the faulty system is 
incomplete during training and the number and extent of the faults, of different types, can 
evolve during operation [20], [21]. This will be addressed through the formulation of fault 
diagnostics methods based on unsupervised learning, which will be trained with data points 
of standard operating conditions, the baseline, and unlabelled data points, which may also 
contain data representative of faulty conditions, although the number of faults is not known. 
The system will then be used to autonomously label all available data for MAS deployments 
as either standard or anomalous and, if anomalous, which class it belongs to. Afterwards, the 
designer can manually set a representative name for the class based on the actual physical 
fault type from the general FMEA of the RAS type, so that the data can be used in further 
supervised learning approaches, which may be more accurate and efficient.

Therefore, three levels are specified for the data labelling, corresponding to three additional 
columns in the data set:

1. The Boolean labels “standard” (i.e. like the baseline) or “anomalous.
2. The categorical labels “standard”, one of the existing classes that are specific to the 

analysed RAS type, e.g. “leak”, “power/battery failure”, “buoyancy pump failure”, etc. 
for underwater gliders. If a new class is created automatically by the smart fault 
diagnostics system, e.g. if the human designer still needs to analyse the category, the 
classes are labelled sequentially as “class 1”, “class 2”, etc. 

3. The Boolean labels “checked” or “not checked” to define if the data point has been 
checked as actually belonging to the correct category. This is a fundamental step to 
ensure the quality of the data used for the training of fault diagnostics systems, as the 
user may overwrite the values in the other columns.

The last step is fundamental to provide feedback to the system and remove any errors in 
detection and identification of anomalies. In the future, the system should be complemented 
with a mapping of the fault types as returned by the categorical labels to the exact subsystems 
and failure modes to aid the maintenance or replacement of components in a condition-
monitoring intelligent maintenance framework.

Additionally, metadata using the timestamp will be used to capture the four levels of 
annotation described in Section 1.2. The metadata formatting will be based on the ISO 13374
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standards on the “Condition monitoring and diagnostics of machines — Data processing, 
communication and presentation” [22]. 

For underwater gliders, the general failure mode identified in [9] are adopted in project 
ALADDIN and are reported in Table 1.1 for clarity. These will be complemented with the 
individual equipment manufacturer manuals, e.g. [23], [24]. In general, the manifestation of 
the failure will be functional before showing explicit physical damage.

Note that ideally a rigorous data labelling procedure is put in place before the operations of 
the RAS. However, as this was not done in the past with the operation of MAS, project 
ALADDIN will make up for it with the proposed labelling strategy, which is based on the 
philosophy of simple but meaningful labels.
Table 1.1: Failure modes of underwater gliders – modified from [9].

Failure Mode Subsystem

Leak Pressure hull
Power/Battery failure Battery or power electronics

Buoyancy pump failure Variable buoyancy device
Air bladder leak Variable buoyancy device
Oil bladder leak Variable buoyancy device

Collision with a vessel Pressure hull, appendages
Collision with the seabed Pressure hull, appendages

Glider recovered by a fishing boat GPS
Science sensor failure Sensor bay
Roll tilt sensor failure Navigation sensors

Pitch tilt sensor failure Navigation sensors
Compass failure Navigation sensors

Iridium communications failure Communication sensors
Argos failure Communication sensors

GPS sensor failure Communication sensors
Data logging failure On-board software

Command/Control software failure Shore-based software
On-board software failure On-board software

Attitude (pitch) control failure Pitch control
Roll motor failure Heading control

Rudder broken Heading control
Fin locked at fixed position Heading control
Digfin not working properly Heading control

Unknown Unknown

For the ALR, the failure modes will be complemented by the FMEA performed by the NOC.

Selected Data Sources
Due to the ready availability of data, the deployments of underwear gliders will be used as a 
case study for the definition and verification of sensing and understanding procedures for RAS 
in project ALADDIN. In particular, for the development, training, validation and initial testing 
of the fault diagnostics methods, available deployment data from MAS will be employed.

Underwater Gliders

Firstly, the data from ten deployments of G2 Slocum underwater gliders [25], [26] operated 
by the NOC will be analysed (Table 1.2), as anomalous behaviour has already been studied for 
this data set.
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Table 1.2: Deployments of Slocum G2 underwater gliders operated by the NOC, inclusive of glider identification number, 
date and project of the deployment, duration and registered RAS status. The deployments were made as part of project 
AtlantOS (EC/633211), CaNDyFloSS  (NE/K001701/1) and ALTERECO (NE/P013902/2). OMG refers to Ocean Microstructure 
Glider, i.e. a glider with a very large sensory package that causes a significant increase in drag.

No. Glider ID Date Project Duration [days] RAS status
1 345 2014 AtlantOS, CaNDyFloSS 123.9 Healthy
2 397 2015 AtlantOS, CaNDyFloSS 45.9 Healthy
3 399 2015 AtlantOS, CaNDyFloSS 84.6 Possible biofouling
4 419 2015 AtlantOS, CaNDyFloSS 11.0 Healthy
5 423 2015 AtlantOS, CaNDyFloSS 6.8 OMG
6 424 2015 AtlantOS, CaNDyFloSS 20.8 OMG
7 194 2017 ALTERECO 83.9 Angle of list
8 304 2019 ALTERECO 76.9 Loss of right wing
9 345 2019 ALTERECO 76.8 Strong disturbances

10 436 2019 ALTERECO 89.8 Loss of left wing

Additionally, through UCL’s project “Identification of the Dynamics of Underwater Gliders 
(IDUG)” as part of the umbrella project EUMarineRobots (EC/731103), the dataset for Slocum 
G2 gliders is complemented by an additional two deployments operated by PLOCAN with 
simulated and observed high levels of marine growth or biofouling in Table 1.3. 
Table 1.3: Deployments of Slocum G2 underwater gliders operated by PLOCAN, inclusive of glider identification number, 
date and project of the deployment, duration and registered RAS status.

No. Glider ID Date Project Duration [days] RAS status
11 492 2014 IDUG 9.5 Simulated high levels of biofouling
12 492 2015 IDUG 20.5 Growing natural levels of biofouling

To investigate the ability of the procedures to generalise to different MAS technologies, the 
dataset is augmented with deployments of Seaglider underwater gliders, a different type of 
vehicle [27], as studied in [28]. In particular, six deployments operated by the NOC jointly with 
the Scottish Association of Marine Science (SAMS) and IMOS are considered, as shown in 
Table 1.4. 
Table 1.4: Deployments of Seaglider underwater gliders operated by NOC/SAMS and IMOS, inclusive of glider identification 
number, date, duration and registered RAS status.

No. Glider ID Operator Duration [days] RAS status
13 sg545 NOC/SAMS 16.8 Healthy
14 sg532 NOC/SAMS 176.9 Healthy
15 sg550 NOC/SAMS 44.1 Healthy
16 sg616 NOC/SAMS 165.9 Healthy
17 sg603 NOC/SAMS 175.6 Healthy
18 sg602 NOC/SAMS 143.8 Healthy
19 sg153 IMOS 33.7 Healthy
20 sg516 IMOS 91.3 Healthy
21 sg514 IMOS 103.4 Possible biofouling
22 sg516 IMOS 66.9 Healthy
23 sg540 IMOS 36.4 Healthy
24 sg514 IMOS 107.9 Possible biofouling

Additionally, these datasets can be complemented by the data collected by other
deployments from project AlterEco 1-7, and by project MASSMO 5, consisting of Seaglider 
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and Slocum underwater gliders, which are publicly available on the BODC website38. These 
missions are particularly interesting, as they comprise data from multiple vehicles operating 
in the same area so that fleet management solutions can be investigated.

Furthermore, if there is sufficient time, the deployments of the ALR [29], e.g. in Loch Ness, 
can also be analysed to verify the transferability of the methods to more complex RAS 
platforms than underwater gliders. 

For all datasets of recent projects operated by the NOC, both the recovery and decimated 
datasets are available. The data on-board the vehicles, which can be recovered in full at the 
end of a deployment, is sent ashore to the over-the-horizon command and control 
infrastructure in a decimated format to reduce the transmission time, costs and power 
expenditure. The recovery data can be freely downloaded from the BODC portal, whilst the 
recovery data is available through the NOC’s C2.

Selected Areas of Research
From the identified research gaps, two main areas of research are selected as most promising 
for project ALADDIN to make the greatest contribution to the state-of-the-art fault 
diagnostics research and industrial practices:

• Multi-platform sensing: sensors may sometimes present drifts or be mis-calibrated. 
Understanding which sensors are affected can be challenging on complex RAS.  A new 
research direction involves using the data from multiple RAS in the same operational 
area in addition to historical environmental disturbance data to correctly pinpoint the 
damaged sensor. 

• Fault diagnosis: deep learning methods for fleet management. As faults are rare, the 
idea is to exploit information from similar systems. However, different operational 
conditions, system configuration and even types make the problem extremely 
challenging. Domain adaption solutions seem most appropriate, but require large 
datasets of operational data.

In project ALADDIN, we can exploit the large amount of data coming from more than thirty 
MAS, including different asset types, to address both challenges and develop novel solutions 
that can be exploited by other sectors that will rely on fleets of RAS, e.g. the automotive sector.

Additionally, these areas of research will be complemented by the introduction of knowledge-
induced hybrid deep learning solutions that incorporate virtual sensors based on dynamic 
models of the RAS. These solutions are critical to reduce the number of datapoints required 
for learning, thus reducing learning time. Furthermore, the virtual sensors are instrumental 
in correctly identifying faults at lower subsystem level so that targeted maintenance can be 
planned within a future intelligent maintenance framework, which is particularly important 
for under-observed systems like AUVs or satellites.

The project will not be limited to the introduction of new data-driven anomaly detection and 
fault detection and diagnostics algorithms, but rather verification and validation strategies for 
these solutions will be developed and documented.

38 https://www.bodc.ac.uk/data/bodc_database/gliders/

https://www.bodc.ac.uk/data/bodc_database/gliders/
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By performing advanced research in the two selected main areas of research, we are 
confident that project ALADDIN will contribute to the BoK on the assurance of RAS as follows:

• Multi-platform sensing

o BoK: 2.2.1, 2.2.4.1 & 3.1.1 – Defining & verifying sensing requirements; 
identifying sensing deviations;

• Fault diagnosis: Deep learning methods for fleet management

o BoK: 2.2.2, 2.2.4.1 & 3.1.2 – Defining & verifying understanding requirements; 
identifying understanding deviations.

Although no contribution to the BoK is directly made in WP1, WP2 will start to address the 
definition of sensing requirements for RAS and procedures for the identification of sensing 
deviations. WP3 will define understanding requirements for RAS. In addition to the original 
plan, the project may also contribute to the identification of understanding deviations in WP3. 
WP4 will contribute to the verification of sensing and understanding requirements.

Selected Fault Diagnostics Models
From an initial literature review, GAN have been selected as particularly promising for the 
detection of faults on RAS [30], [31]. Deployment dive cycles from a fleet of vehicles tagged 
as "standard" in the first level of data labelling process will be applied to train the GAN-based 
models, so that the models can learn a representation of the data distribution pattern through 
a generative and adversarial process between generator and discriminator, whilst capturing 
the normal variances between individual vehicles. Deployment cycles with unusual patterns, 
which deviate from the learned pattern, will be marked as "anomalous" by the models if they 
present a high value of the anomaly score. The GAN-based models can be directly applied for 
fault diagnostics over larger datasets of deployment to label operational cycles automatically. 
It should be noted that improvements to existing GAN structures are ongoing to achieve 
higher accuracy with reduced computational costs.

Although GAN appear promising for the detection of faults on RAS, they are relatively difficult 
to train and are computationally expensive. Therefore, other deep learning approaches, e.g. 
semi-supervised domain adaption, will be explored as the data labelling progresses in WP2 to 
achieve higher accuracy and better genericity and transferability. In addition, knowledge-
induced learning and hybrid methods will be developed in WP2 and WP3 to improve fault 
isolation and identification. In particular, combining GAN with variational autoencoders and 
model-based virtual sensors can provide improve fault isolation and identification accuracy.

Initial Planning for the Verification Stage
Although proper planning for the verification stage of the project will be carried out at the 
end of WP2 and WP3, an initial planning has been started. In particular, we have begun to 
plan for field tests, which need to be planned a long time ahead to reduce risks and secure 
the funding, and for the implementation of the implementation of the designed methods 
onto C2. 
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Possible Field Tests

An initial field test is preliminary planned for December 2020 (dependent on Covid) as part of 
the EUMarineRobots Transnational Access scheme (EC/731103) project “Fault dEtection, 
isolation and recovery for AuTonomous UnderwateR vEhicles (FEATURE)” run by UCL in 
collaboration with the University of Porto, Portugal. The project will verify the accuracy of 
novel fault diagnostics methods in detecting, isolating and identifying a broken pressure 
sensor on a profiling AUV, so that the on-board controller will switch to the pressure sensor 
in the CTD unit, and a broken inertial measurement unit on a mapping AUV, so that the on-
board computer will switch to the pitch tilt sensor.

Two additional field tests with direct relevance to project ALADDIN are also being discussed 
as possible:

• Field tests of multiple AUVs off the Island of Mallorca in early 2021 by the NOC as part 
of commissioning trials in collaboration with SOCIB,

• Field tests of one glider simulating wing loss and ballasting problems in February 2021 
by UCL in collaboration with SOCIB as part of the transnational access scheme JERICO 
(EC/871153) - dependent on funding.

Additionally, depending on the evolution of the Covid outbreak, deployments by the NOC in 
late 2021 can be used for verification of the fault detection and diagnostics system through 
C2, although the system will not make any changes to the missions, i.e. will be used in read-
mode only.

Interfacing of a Model-Based Fault Diagnostics System with C2

Anticipating the WP4 verification stage, we have started to integrate a model-based fault 
diagnostics system within C2 to ensure that we have the interfaces required for the 
implementation of ALADDIN’s fault detection and diagnostics system on actual deployment 
of AUVs at sea. The C2 interfacing assumes that the diagnostics system is to be applied as an 
external algorithm. This assures that new algorithms for MAS to be implemented in C2 are 
done in safe and secure manner, while enabling near-real-time execution and monitoring. 

The implementation of the model-based solution also allows us to assess and improve the 
robustness of algorithms developed for real-world operations. Furthermore, maintenance is 
another aspect that we consider to ensure continuous reliability of the system. As the 
requirements of the algorithms grow, we have taken this opportunity to plan for 
enhancements to the C2 infrastructure to include more features such as metadata access and 
events labelling.

1.6. Conclusions

In the absence of accepted international terminology for MAS at present, the vocabulary for 
condition monitoring of MAS that will be used in the remainder of the project has been 
introduced. The terminology is designed to be general and transferable to any RAS technology, 
although failure modes are specific to each design and can be obtained from the FMEA. A 
procedure for the robust labelling of RAS timeseries data has been presented. The process is
based on the principle of simplicity and includes a step of human-in-the-loop feedback. The 
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use of metadata based on time stamps will enable the labelled data points on the different 
layers of timeseries: RAS deployment, segments of the deployment and individual cycles.  

Furthermore, specific datasets of deployments of a range of AUV technologies have been 
selected to be used in the remainder of the project. The datasets will be complemented by 
satellite data to capture the environmental disturbances during the deployments. 

After identifying an interesting research gap, project ALADDIN will focus on multi-platform 
sensing and deep learning for fleet management fault diagnostics to maximise its contribution 
to advancing the state of the art of intelligent maintenance systems. 

At present, a GAN-based method is being introduced that will be used for the definition of 
sensing requirements and deviations of RAS in WP2. The method will be improved with a 
hybrid model-based and data-driven architecture in WP3 to define understanding 
requirements and deviations. Additionally, code is being implemented on C2 for the 
verification of the methods in WP4, with some field tests of AUVs being planned.
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2. Sensing

This section focuses on sensing. The contents presented in Section 2 has been published in
[32]. Another study [33] using a Variational Autoencoder with Long Short-Term Memory 
Networks to detect anomalies for UGs has been accepted for publication.

2.1. Introduction

Whilst autonomous systems are predicted to become pervasive in the maritime industry [34], 
this growth is currently heavily constrained by the challenges of fully independent remote 
operation in hazardous and dynamic marine environments. Marine Autonomous Systems 
(MAS), such as Underwater Gliders (UG), can be at sea for up to months at a time, during 
which they periodically surface and communicate via satellite with remote expert operators 
known as pilots. The transmission of data to and from the MAS is severely constrained by low-
bandwidth satellite, making it challenging for pilots to monitor MAS time series data and 
behaviour during operation manually.  If the underlying cause of observed adverse behaviour 
cannot be correctly diagnosed and the situation remedied, e.g. via the remote adjustment of 
piloting parameters or mission scope, the MAS and its data cargo can be lost or present a 
hazard to shipping [35].  As a result, to reduce operational costs, increase reliability and scale-
up the use of MAS within the maritime industry, strategies must be developed for automated 
anomaly detection and fault diagnosis.

The code of practice for maritime autonomous surface systems developed by Maritime UK 
[36] recognises the need for MAS to support on-board signal processing with remote 
condition monitoring to interpret the impact of faults and adverse conditions on the vehicle's 
safety and performance. On-board systems are limited by power and computational 
constraints, whilst current manual detection and diagnosis approaches are limited by the 
experience of the individual pilot and are subject to human error, especially when MAS 
require pilot attention around the clock.  In the absence of general on-board anomaly 
detection and diagnosis systems, the ability to transmit sensor data in a timely manner to an 
off-board system and to receive appropriate commands in response becomes of critical 
importance for MAS safety and performance.  

The operation of MAS platforms beyond the visual line of sight requires a suitable command 
and control system. For example, the UK's National Oceanography Centre (NOC) Oceanids C2 
system is a platform to support the over-the-horizon operation of MAS within the National 
Marine Equipment Pool for efficient fleet management [37], [38]. Another example is the LSTS 
Neptus and Dune over-the-horizon command-and-control environment [39]–[41]. This work 
aims to develop a holistic automated anomaly detection system39, well-suited to the limited 
availability of multivariate time series data during MAS operations. 

The contributions of this study are twofold. First, this work proposes an improved 
Bidirectional Generative Adversarial Networks (BiGAN) anomaly detection system guided by 
periodic assistive hints to achieve effective and stable training of generative adversarial 
models. Second, this work introduces a novel holistic anomaly detection system for MAS to 
be integrated within remote control centres to monitor operations over the horizon. The 

39 https://github.com/pwu01/ALADDIN-BiGAN-anomaly-detection
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system is based on BiGAN to detect faults by tracking the anomaly score. As compared with 
state-of-the-art anomaly detection systems for MAS that exploit steady-state conditions, 
deep neural networks are used to capture dynamic effects from the time series data. Two 
healthy deployment datasets in time series are used to train the system via unsupervised 
learning. The developed system is tested using actual datasets from nine deployments 
collected by a selection of vehicles operating in a range of locations and environmental 
conditions with varying mission length. A sensitivity analysis on the data decimation settings 
for satellite communication suggests the proposed approach is insensitive to these settings, 
making it suitable for Near Real-Time (NRT) anomaly detection for UG that are known to be 
under-observed systems. Such an unsupervised approach requires minimum training data 
preparation efforts and successfully detects anomalies for the nine test MAS deployments.

2.2. Related work

Methods for condition monitoring can be subdivided into model-based and data-driven 
diagnostics [10], [42]. The former relies on dynamic models of the physical systems, whereas 
the latter on the analysis of actual sensor data. Whilst model-based solutions are better for 
condition monitoring of new systems where available data is limited, data-driven methods 
show significant improvements in accuracy in the cases where significant prior data exists  
[43].

A review of nonlinear model-based methods for condition monitoring can be found in [44]. 
These approaches are useful for systems that present strong nonlinearities or coupling. A 
summary of fault detection methods for aircraft based on signal-processing and dynamic 
models can be found in [13]. These techniques are robust, simple and computationally 
relatively inexpensive. Data-driven methods can be generalised to different fault detection 
and diagnosis problems and scaled to a large number of sensors. These approaches would 
require the data to be appropriately collected and processed.

[45] integrated fault tolerance into the design of a robot real-time control architecture 
showing the benefits of including condition monitoring considerations from the initial stages 
of design of a new prototype. Specifically for Autonomous Underwater Vehicles (AUVs), many 
fault detection studies involve thrusters, inclusive of model-based solutions [46], radial basis 
function networks [47], Gaussian particle filter [48] and artificial immune system [49]. 
Clustering solutions are also investigated by [50] to determine faults in an unsupervised way. 
[51], [52] have developed an automatic fault detection system for long-range AUVs based on 
Bayesian nonparametric topic modelling techniques. Although the dataset focuses on the 
identification of bottoming events, the behaviour of the analysed long-range AUV is similar to 
that of UGs. The nearest neighbour classifier presents particularly high accuracy over two 
different test sets. A system to develop safety indicators for the operation of MAS is described 
in [53], with a case study on an AUV. [11] propose an integrated fault detection and diagnosis 
architecture for AUVs, although the focus is on on-board systems. [12] have designed rule-
and model-based methods for the detection of the loss of wings on UGs and the onset of high 
levels of marine growth on UGs [14]. Further work by [54] has developed and tested an 
anomaly detection system that blends model- and data-based solutions to detect both 
simulated and naturally accumulated biofouling.
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[55] provide a comprehensive review of deep learning for anomaly detection, and propose a 
taxonomy by classifying the state-of-the-art deep anomaly detection techniques into three 
categories, i.e. feature extraction, learning feature representations of normality and end-to-
end anomaly score learning. In the category of learning feature representations of normality, 
models based on Auto-Encoder (AE) are proposed to detect anomalies by learning low-
dimensional feature representations to reconstruct given data instances [56]–[58]. For the 
anomaly detection of UGs, [59] have developed different data-driven solutions, including 
feedforward neural networks and Auto-Encoders (AEs) that can detect anomalies such as 
wing loss and marine growth. However, the features learned by AE-based models can be 
biased by infrequent normalities in the training dataset. With data instances encoded by a 
prior distribution over the latent space, Variational Auto-Encoder (VAE) enables a better 
reconstruction of input data instances; hence improved anomaly detection performance can 
be achieved. For anomaly detections of multivariate sequence data, variants of VAE have 
haven been developed [60], [61]. The Generative Adversarial Networks (GAN) proposed by 
[62] can capture the data distribution via generative and adversarial processes. The improved 
capability of capturing data distribution is particularly useful for anomaly detection 
applications [63]. The superior feature representation learning capability makes GAN 
particularly promising for remotely operated MAS (e.g. UGs) that can be highly under-
observed due to low data transmission bandwidth and limited sensing ability to reduce the 
on-board space and power requirements. However, GAN are constrained by issues such as 
training instability [55].

Based on work of [62], [64] and [65] have developed variants of the original GAN, i.e. 
Adversarial Learned Inference GAN (ALI-GAN) and Bidirectional-GAN (BiGAN), respectively, to 
additionally learn a latent representation of the data, which have become the basis of several 
GAN-based anomaly detection systems. [66] developed a BiGAN-based anomaly detection 
system for high-dimensional real-world data such as images. [67], [68] have developed a 
series of Bi-GAN based anomaly detection models for medical image anomaly detection. An 
earlier study by [69] applied GAN to detect cyber attacks, using multivariate time series with 
the need of the inference process to map the test data back to latent space. Although these 
GAN-based anomaly detection systems appear successful in the applied domains, the GAN-
based anomaly detection system is still relatively difficult to train for reasons including its 
unsupervised nature and the generative and adversarial process between multiple deep 
neural networks [70]. Despite GAN-based anomaly detection systems' success in other 
domains, they have not been applied to MAS, which are subjected to limited accessibility to 
system data and require a high level of generality to detect unpredicted anomalies in highly 
dynamic ocean environments.

2.3. Underwater gliders and data description

Slocum underwater gliders
All data used in this study are from deployments of Slocum G2 UG [71], manufactured by 
Teledyne Webb Research [25], [26]. As shown in Figure 2.1, a Slocum UG is actuated by a 
Variable Buoyancy Device (VBD), which enables the vehicle’s displacement and thus its 
buoyancy to be varied.  Pitch is controlled by shifting the position of a movable battery pack, 
and the yaw angle is controlled using a rudder. Using fixed wings to provide lift, gliders can 
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perform a sawtooth-like profile through the water-column. A Slocum UG starts a “yo”, or cycle, 
by reducing its buoyancy and shifting the battery forward to initiate the descent, then extends 
the VBD and shifts the battery afterwards to climb to a designated depth at the apogee, 
completing the glider's “yo”. A single dive can comprise multiple yos as shown in Figure 2.1. 

 
Figure 2.1: Diagram showing the concept of operation of a Slocum UG. The drawing is not to scale: the analysed vehicles 
reach their apogee at a maximum depth of either 200 m or 1,000 m and have glide path angles with a magnitude in the 
range of 15° to 30°.

Once deployed, UGs operate fully autonomously, with pilots relying on a limited snapshot of 
multivariate time series data sent via satellite whilst the vehicle is on the surface, which 
includes system health variables, current instructions, last GPS position and decimated data 
from past dives.  During normal operation, the remote pilots will first manually check this 
dataset for subsystem errors, warning and oddities reported by the glider itself (e.g. glider 
stalls, behaviour errors, and communication interruptions [26]) along with the sawtooth dive 
profile to ensure each yo is symmetrical and the glider is reaching the target depth. Progress 
towards the target waypoint is also considered, along with a check of the battery health and 
consumption. This check is usually performed once per day, with the pilot making smaller 
observations more regularly after each dive. Therefore, pilots are only likely to look into the 
flight parameters in detail if the glider: is reporting errors in these subsystems, is failing to 
dive correctly or is clearly not making expected progress. Hence, issues that gradually emerge 
or that affect parameters outside those routinely monitored, such as roll, can go unnoticed, 
resulting in significant impacts on vehicle endurance and safety.  Consequently, a smart 
anomaly detection system is crucial.

Datasets
Table 2.1 lists the multivariate time series datasets used in this study. The datasets are 
measured by Slocum G2 gliders over ten deployments operated by the NOC (1-10) [72] and 
one deployment (11) operated by the Oceanic Platform of the Canary Islands (PLOCAN) giving 
a total of 11 deployments. The labels correspond to healthy or standard baseline conditions, 
natural and simulated biofouling, angle of list, loss of one wing, strong environmental 
disturbances, e.g. due to ocean currents, and bulky sensory packs, e.g. the turbulence probes 
for the Ocean Microstructure Gliders (OMG). Biofouling caused by marine growth in shallow, 
warm and tropical waters can lead to an increase of a UG's weight, a significant drop in speed, 
even possible premature retrieval at sea [14]. OMG would lead to a higher drag coefficient 
and a higher negative buoyancy offset. The first two deployments (healthy) are used to train 
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the anomaly detection system and the remaining nine datasets, which include several 
anomalies as well as healthy behaviour, are used for testing purposes to assess the generality 
of the approach.
Table 2.1: The data applied in this study is measured by a number of Slocum G2 gliders over eleven developments.

The variables are detailed in Table 2.2. Mission specific geographical positions, control signals 
(heading control, pitch control, rudder angle control and VBD control) are not included in the 
datasets to ensure generality. The vertical velocity is calculated from the depth signal, which 
is in turn obtained from the pressure signal. The scientific pressure sensor measures the 
sci_pressure signal.
Table 2.2: Sensor list.

2.4. Anomaly detection using BiGAN

The presented anomaly detection method is based upon BiGAN [64], with additional training 
hints guiding more effective generator (G) and discriminator (D) training. In each training 
iteration, the discriminator, generator and encoder (E) are trained concurrently. The assistive 
hint loss function is applied periodically to guide the encoder and generator using the errors 
terms of data patch reconstruction and discriminator feature. This approach is inspired by
[68] and [70] but has been improved. In [68], the encoder E is trained only after D and G have 
been trained, whereas in this study the discriminator, generator and encoder are trained 
concurrently. In [70], the hint loss is added directly to the BiGAN loss function; our approach 
instead applies a periodic update step to the parameters of the generator and encoder.

Problem statement
[62] proposed Generative Adversarial Networks for estimating generative models via an 
adversarial process training a generative model G to capture the data distribution, and a 
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discriminative model D that estimates the probability that a data sample comes from the 
training data or is generated by G. This framework trains D and G concurrently such that D
maximises the probability of assigning the correct label to both training samples from data x
and generated samples from G. D and G play a minimax game with the value function V(G,D):

2.1 

where is the data distribution, is a prior on input noise variables. Although 
the ability of the original GAN framework to learn generative models mapping from simple 
latent distributions to arbitrarily complex data distributions has been demonstrated, it cannot 
project data back into the latent space. The BiGAN [64] and ALI-GAN [65] adopt a similar 
approach using an encoder with a generator to learn this inverse mapping.

Figure 2.2 shows the structure of the BiGAN, which includes an additional encoder E that maps 
data x to its latent representations z. A trained BiGAN encoder can serve as a useful feature 
representation for related semantic tasks, i.e. the latent representation z can be regarded as 
a representation of data x. Unlike the standard GAN [62], the discriminator D of the BiGAN 
discriminates (x, E(x)) and (G(z), z). The training objective of the BiGAN is:

2.2 

Figure 2.2: Structure of the BiGAN [64].
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Algorithm 1 details the training process of the BiGAN-based anomaly detection system. [64]
have proven that the encoder E and generator G must learn to invert one another in order to 
fool the discriminator D. The encoder and generator of the BiGAN structure behave similarly 
to the encoder and decoder of an independent auto-encoder which learns a representation 
for a set of input data and reconstructs the data samples as closely as possible to their original 
inputs. Inspired by this feature of auto-encoders, we use the reconstruction difference 
between the input sample and reconstructed data to assist the BiGAN training, i.e. using the 

norm between the input data x and its reconstruction G(E(x)) via E and G:

2.3 

where is the number of input data elements.



ALADDIN Technical Report

Copyright © 2022 University of York

Page 37

Project
ALADDIN

It is worth noting that [70] have proposed training generative adversarial models using several 
assistive hints. However, such hints are added to the BiGAN loss function directly in their 
approach. This work proposes applying such hints periodically to achieve higher training 
efficiency. In addition, in the discriminator network, the neural network layer right before the 
final output layer is defined as a feature layer, which outputs a feature f. With this feature f
provided by the discriminator, an additional hint loss is defined as:

2.4 

where is the feature layer's number of neurons.

Combining and , the assistive hint loss function is thus:

2.5 

where is a hyperparameter which can be adjusted. Note that in the validation and test 
phases, the residual of is defined as the anomaly score that represents the degree of 
anomalies. Ideally, the residual should be near zero if the query data patch is normal. A high 
anomaly score indicates the input data patch deviates severely from healthy deployment data 
pattern.

GAN for underwater glider anomaly detection
Figure 2.3 shows the proposed anomaly detection framework using BiGAN. In the training 
phase, the pre-processed healthy deployment datasets are applied to train the generator G, 
encoder E and discriminator D concurrently. Assistive hints are applied to guide the generator 
G and encoder E training periodically. In the test phase, the reconstruction error and 
discriminator feature hint error jointly represent the degree of an anomaly.



ALADDIN Technical Report

Copyright © 2022 University of York

Page 38

Project
ALADDIN

Figure 2.3: Anomaly detection using BiGAN for underwater gliders: (a) training using normal data and (b) testing using 
unseen deployment data.

Figure 2.4 shows the workflow of the proposed anomaly detection system underwater gliders. 
The model is trained using normal deployment data, i.e. no anomalies are included in the 
training dataset. It should be noted that this framework is unsupervised, as no labelling is 
required on the normal deployment data [67], [73]. During training, the model is tested 
periodically with synthetic sensor faults by manually setting one or more sensor readings to 
their lower bounds to check whether the model can detect synthetic faults. Once the model 
has been checked, it will be applied to detect anomalies for vehicles of the same type within 
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a fleet. If the model has learned the distribution of the training data, it should be 
able to output a high anomaly score that represents the degree of an anomaly. The anomaly 
score should be close to zero if the input data is normal. When anomalies happen, the system 
is expected to output a high anomaly scores that represent the degree of anomalies.

Figure 2.4: Workflow of unsupervised anomaly detection using GAN for underwater gliders.

2.5. Training and validation

Data processing
Figure 2.5 illustrates the data processing process preparing the training and validation 
datasets, using the two healthy deployments of glider units 345 and 397 in 2014 and 2015. 
The dive cycles of the multivariate time series datasets are filtered to remove cycles with 
insufficient data points (less than ten data points for each sensor) to maintain cycles carrying 
sufficient features. Unified timelines with a time step of 5 s are subsequently applied to the 
filtered cycles by linear interpolation of all the remaining sensor measurements. The 
interpolated data are then normalised to the range of . Random data patches with 64 
time steps are sampled evenly from the valid dive cycles in each dataset. The data patches 
are augmented as matrices, where a is the number of sensors, b is the number of time 
steps (64) for each data patch, so that the training dataset is ready for the training of the 
anomaly detection system. To monitor and check the performance of the anomaly detection 
system performance during training, synthetic sensor anomalies are injected into the data 
patches by setting a number of sensor measurements to their minimum values. Note that the 
sensors with anomalies are randomly chosen for each validation data patch. For the test 
datasets, a similar data processing flow has been followed. However, it should be noted that 
ten random data patches are sampled from each dive cycle in the test datasets.
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Figure 2.5: Data processing procedure applied to prepare the training and validation datasets using the two deployments of 
units 345 and 397.

Training
The proposed anomaly detection system is implemented in Python 3.8 and TensorFlow v2.4.1. 
The encoder network consists of: an input layer that receives the flattened data patches; four 
sequentially connected hidden dense layers that are followed by their own batch 
normalisation, leaky ReLU activation and dropout (0.1 dropout rate) layers; and an output 
layer with the size of 256 activated by sigmoid. The encoder and generator network structures 
are inversely similar to each other. The discriminator processes (x, z) to output a feature f
from the feature layer and its prediction (a scalar) on whether (x, z) is from the training 
dataset. The hidden layers of the discriminator are configured the same as that of the encoder. 
The Adam optimiser is applied to update and is with a learning rate of 

. Note that is updated every training iterations of . The 
coefficient that adjusts the weights of the reconstruction and feature losses is set as . 
The mini-batch size is . The training dataset includes data patches extracted 
from two healthy deployments of UGs. The validation dataset includes data 
patches extracted from the nine test deployments (see Table 2.1). The training is terminated 
after training iterations of (51 min on a Nvidia V100 GPU).

Validation using synthetic anomalies
Figure 2.6 shows the validation process using synthetic sensor faults (every training 
iterations of D, G and E). For the validation without faults, the anomaly score stabilises to a 
value slightly less than 0.002. For the validation data samples with 1, 2 and 3 abnormal sensors, 
the anomaly scores stabilise to the values around 0.016, 0.022 and 0.028, respectively. The 
stabilised anomaly scores suggest that the training of the anomaly detection system has 
converged. It should be noted that the converged anomaly score (0.002) for normal data is 
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not exactly zero, which suggests the reconstruction and discriminator feature residuals still 
exist in low magnitudes. Nevertheless, this value is an order of magnitude lower compared to 
the ones with synthetic sensor anomalies.

Figure 2.6: Periodic algorithm validation in training using synthetic sensor faults with 0, 1, 2 and 3 abnormal sensors 
randomly chosen. The model is tested every 100 training iterations of . The records of the randomly chosen sensors 
are manually set to their minimum values.

Ablation study
An ablation study has been conducted to confirm the effectiveness of the assistive hints 
added to guide the BiGAN-based anomaly detection system training. Removing the assistive 
hint (Eq. 2.1) leads to the BiGAN unable to reconstruct normal enquiry data accurately. 
As shown in Figure 2.7, when is removed, the model has converged to a state of not 
being able to differentiate the four synthetic anomalies, suggesting the added hint has 
effectively guided the training of the BiGAN model (also see Figure 2.6).

Figure 2.7: Periodic algorithm validation in training using synthetic sensor faults when no hints are added to guide the 
training.
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2.6. Field test results and discussion

The anomaly detection system is tested using the deployment datasets detailed in Table 2.1. 
Ten data patches are randomly sampled from each dive cycle, which are then applied to get 
an averaged anomaly score for a dive cycle. Hence, the anomaly detection system applies to 
any dive cycles with a sufficient number of data points and can output an anomaly score for 
NRT monitoring when the dive cycle data is received. Table 2.3 details the mean and standard 
deviation values of the test deployments (calculated using dive cycle values in the 
deployments). The test deployments include one healthy deployment of unit 419. The 
average anomaly score of unit 419 will be applied as the baseline to assess the relative levels 
of the anomalies.
Table 2.3: Anomaly scores of the test deployments.

The reconstructed sensor data is compared against the original input query data. The sensors 
with high anomaly score contributions are annotated by the system to alert the pilot. For the 

sensor's reading at time step , its reconstruction error is defined as the absolute value 
of the difference between the enquiry data and the reconstructed data via BiGAN:

2.6 

which will be highlighted by its magnitude to visualise anomalies on sensor readings.

Healthy glider deployment
As shown in Figure 2.8, for a healthy deployment of unit 419 in 2015, the anomaly scores 
distribute evenly around their average value in general (0.00188 ± 0.00026). The initial 
anomaly score starts from the value of 0.0030 and decreases to the average anomaly score 
after ten dive cycles. The initial high anomaly score is likely caused by the shallow trial dives 
with significant dynamic effects at the start of a glider deployment. Note that the average 
anomaly score of 0.00188 very close to the converged anomaly score in the validation test 
without anomaly. The slight variance in the anomaly score throughout the cycles for this 
healthy glider deployment suggests that the proposed anomaly detection system can 
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accurately reconstruct the data samples similar to those it encountered in the training phase 
without giving false indications of anomalies.

Figure 2.8: Test using a dataset of a healthy glider deployment dataset collected by unit 419 in 2015. The healthy reference 
is the average anomaly score of unit 419 over this deployment and will be applied as the baseline to assess the anomaly 
levels of other deployments.

Figure 2.9 shows the reconstruction errors of a typical data patch from unit 419 in a healthy 
deployment. Errors with small magnitudes distribute among most sensors, suggesting that 
the anomaly detection system has reconstructed the data patch with high accuracy. Ideally, 
the anomaly detection system should learn the healthy deployment datasets' data 
distributions applied for training. The low magnitudes of reconstruction errors for unit 419 
suggest that the anomaly detection system has learned the patterns of the training datasets.

Figure 2.9: Reconstruction errors of a typical data patch of unit 419 in a healthy deployment. Note that the maximum 
reconstruction error could be up to 1.0; the upper limit of the colour bar is set as 0.5 to better visualise the errors.

Deployments with biofouling
Figure 2.10 details the anomaly scores of two deployments with biofouling, i.e. deployments 
of unit 399 (0.000235 ± 0.00053) with naturally accumulated biofouling in 2015 (Figure 2.10a) 
and unit 492 (0.00470 ± 0.00113) with simulated biofouling in 2020 (Figure 2.10b). For unit 
399, shallow trial dives with dynamic effects at the beginning of the deployment lead to high 
initial anomaly scores. The anomaly score increases gradually from dive cycle 200, which is 
likely associated with marine growth [74]. The growing anomaly score is in line with the 
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increasing drag coefficient deduced through model-based and other data-driven approaches 
in [14]. The similar growth of the anomaly score and the drag coefficient suggest that the 
proposed BiGAN-based anomaly detection system can capture slowly growing anomalies, 
even though it is trained with deployment datasets collected by other gliders in different 
missions. As shown in Figure 2.10b, for the deployment of unit 492 with drag simulators 
added to the UG to simulate extreme levels of marine growth [14], the anomaly scores of the 
dive cycles are distributed around their average value of 0.00470 which is high above the 
baseline deduced from the healthy deployment of unit 419. The average anomaly score of 
unit 492 is close to the anomaly values of the final dive cycles of unit 399.

Figure 2.10: Test using datasets of two deployments with biofouling: (a) unit 399 in its final stage of deployment with a high 
anomaly score caused by naturally accumulated biofouling and (b) unit 492 with simulated high levels of biofouling.

As shown in Figure 2.11a, the system has reconstructed a data patch from the final stage of 
this deployment with high reconstruction errors due to possible biofouling. The relatively high 
reconstruction errors can be observed from the sensors including VBD, state_of_charge, 
depth and pressure. Even stronger highlights of reconstruction errors can be observed in 
Figure 2.11b from a data patch of unit 492 with simulated biofouling.

Figure 2.11: Reconstruction errors of typical data patches with biofouling: (a) unit 399 in its final stage of deployment with a 
high anomaly score caused by naturally accumulated biofouling and (b) unit 492 with simulated high levels of biofouling.
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Deployments with OMG
Figure 2.12 shows the anomaly scores of two deployments (unit 423 and unit 424) with OMG. 
The two deployments' anomaly scores are similar to each other, i.e. 0.00353 ± 0.00081 for 
unit 423 and 0.00434 ± 0.00024 for unit 424, respectively. The additional turbulence probes 
have affected the gliders' hydrodynamic characteristics, leading to increased drag coefficients 
and high negative buoyancy offsets and, consequently, to higher anomaly scores. It is worth 
noting that no dramatic change in the anomaly score magnitudes can be observed from the 
two deployments with OMG, suggesting that it is unlikely other anomalies occurred during 
the two deployments. The proposed anomaly detection system appears to be effective in 
detecting anomalies caused by increased drag coefficient consistently throughout the 
deployments of the glider units.

Figure 2.12: Test using datasets of two deployments with OMG: (a) deployment of unit 423 in 2015 and (b) deployment of 
unit 424 in 2015.

Figure 2.13 shows the reconstruction errors of a typical data patch of unit 423 and unit 424. 
Obviously, the rudder_angle, battery_position, battery state_of_charge and VBD sensors that 
are the most highlighted ones, as the vehicle becomes less manoeuvrable due to the higher 
drag. Although errors in lower magnitudes can also be observed for other sensors, the most 
striking difference is the vacuum sensor which indicates a different pressure inside the 
pressure hull was used for the OMG as compared with the standard gliders.

Figure 2.13: Reconstruction errors of typical data patches with OMG: (a) unit 423 and (b) unit 424.
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Deployment with angle of list
Figure 2.14 details the anomaly scores of the unit 194 deployment (0.00303 ± 0.00026) in 
2017 which experienced an angle of approximately 9° list due to a pre-deployment error. 
Fluctuations of the anomaly scores can be observed, which suggests that the operational 
status of this glider were relatively unstable compared to the deployments discussed in the 
section of Healthy glider deployment. In this deployment, the angle of list caused asymmetric 
drag and lift forces. Consequently, the average anomaly scores presented in Figure 2.14 are 
61.2% higher than that of the unit 419 baseline deployment. In addition, an increasing trend 
of the anomaly score can be observed in the final stage of the deployment (after 680 dive 
cycles), which is possibly due to the pilot's control decisions. It appears that the anomaly 
detection system can detect the transient effects in the abnormal glider status.

Figure 2.14: Test using dataset of a deployment dataset collected by unit 194 with angle of list in 2017.

Figure 2.15 presents the reconstruction errors of a data patch extracted from the deployment 
of unit 194, which encountered a significant angle of list of approximately 9°. The underwater 
glider attempted to compensate the list angle by applying control actions to the rudder. 
However, no apparent errors can be observed from the roll and pitch signals, which could be 
due to the errors are low in magnitudes compared to the maximum readings of these signals.

Figure 2.15: Reconstruction errors of typical data patch of unit 194 with angle of list.
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Deployments with loss of wing
Figure 2.16 shows the anomaly scores of two deployments with the loss of one wing, i.e. unit 
304 (0.00296 ± 0.00067) with the loss of the right wing (Figure 2.16a) and unit 436 (0.00319 
± 0.00080) with the loss of the left wing (Figure 2.16b) in 2019. As shown in Figure 2.16a, 
fluctuating high anomaly scores are present for the early dive cycles (before 500 dive cycles) 
of unit 304, which is mainly due to the very shallow dive depth, where dynamic effects of the
vehicle and the variation in the oceanic sensor data are more significant [12]. The anomaly 
scores of unit 304 start to increase abruptly from dive cycles 510 to 560, suggesting that the 
anomaly detection system has detected an unusual pattern. This anomaly has also been 
detected in [12], which corresponds to unit 304's loss of right wing in this deployment. As 
shown in Figure 2.16b, the anomaly score of unit 436 jumps to 0.0060 within one dive cycle 
after 230 dives, suggesting something very unusual happened within that dive cycle. In 
addition, the anomaly scores of dive cycles from 120 to 220 suggest that unit 436 may have 
encountered an unusual event, which subsequently caused a delayed but instant loss of its 
left wing.

Figure 2.16: Test using datasets of two deployments with wing loss: (a) deployment of unit 304 with the loss of the right 
wing in 2019 and (b) deployment of unit 436 with the loss of the left wing in 2019.

Figure 2.17 highlights the reconstruction errors of data patches from units 304 and 436, which 
lost the right wing and the left wing in their deployments, respectively. The rudder_angle 
signal is the most highlighted for both units 304 and 436, suggesting the gliders had frequently 
attempted to use their rudders to compensate for the imbalance caused by the wing loss. In 
addition, the battery state_of_charge unit 304 signal also shows a high level of reconstruction 
errors due to the compensating control actions that consumed excessive energy from the 
battery. Note that the reconstruction error shown in Figure 2.17a is a late-stage data patch of 
the deployment; the accumulated excessive energy consumption from the battery becomes 
apparent in the case of unit 304.
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Figure 2.17: Reconstruction errors of typical data patches of losses of wings: (a) unit 304--loss of the right wing and (b) unit 
436--loss of the left wing.

Deployment with strong environmental disturbances
Figure 2.18 details the anomaly scores of the dive cycles within the deployment of unit 345 in 
2019. This deployment was subject to strong disturbances (e.g. transverse ocean currents). 
Consequently, the average of anomaly scores (0.00530 ± 0.00097) is 181.9% higher than the 
baseline of unit 419. It should be noted that another dataset collected by unit 345 in 2014 has 
been included in the training dataset. The system has identified the anomalies of unit 345 in 
2019.

Figure 2.18: Test using the dataset of a deployment collected by unit 345 with strong environmental disturbances in 2019.

Figure 2.19 shows the reconstruction errors of a data patch of the deployment of unit 345 
that experienced strong ocean disturbances such as transverse ocean currents. Apparent 
errors can be observed from the sensors, including battery_voltage, rudder_angle, VBD and 
state_of_charge. Unlike other scenarios that have been discussed, battery voltage signal 
deviates from the pattern the anomaly detection system has learned, which is probably due 
to the glider had to make frequent adjustments to its rudder to overcome the strong 
disturbances causing excessive power consumption from the battery, which led to a lower 
battery voltage.
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Figure 2.19: Reconstruction errors of a typical data patch of unit 345 encountered strong environmental disturbances.

Summary
The proposed anomaly detection system successfully identifies anomalies for a fleet of gliders 
operating in different deployments over different times. In addition, the highest observed 
anomaly score among all tests is around 0.010, which is significantly lower compared to the 
anomaly score obtained for simulated sensor faults. This indicates that it is significantly more 
challenging for humans to detect actual anomalies with abnormal patterns distributed over 
multiple sensor readings in low magnitudes.

2.7. Sensitivity study of NRT data decimation settings

In this section, the influence of NRT data decimation settings over anomaly detection accuracy 
is investigated. The sensitivity study is implemented by varying the data sampling intervals to 
simulate the gliders' decimation process. The sampling intervals of dt include 5 s, 10 s, 30 s, 
60 s, 120 s and 240 s. The gaps between two adjacent timestamps are filled by linear 
interpolation to match the enquiry data structure with a fixed of 5 s. It should be noted 
that the results acquired with the decimation interval of 5 s are deemed as ground truth as 
they are completely based on the most detailed recovery mode data. For each decimation 
setting, the anomaly detection result of a dive cycle (either positive or negative with anomaly) 
is compared with its corresponding ground truth. A result is deemed as accurate if it matches 
its ground truth, otherwise it is inaccurate. The anomaly detection accuracy is calculated by 
dividing the number of accurate detections with total detection times.

Individual sensors
In Group A, for each of the 15 sensors under investigation, at one time, one of the sensor 
readings are re-sampled with different decimation settings whilst other sensor data remain 
as originally recorded. As a result, the influences of individual sensors can be explored. The 
anomaly detection accuracy is calculated using all the nine test deployments, i.e. it is an 
overall accuracy over all the test deployments. As shown in Table 2.4, only 3 of the sensors, 
i.e. battery_position, rudder_angle and VBD have minor impacts on the anomaly detection 
accuracy, whist the decimation of all the other sensors do not present observable impacts on 
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the anomaly detection accuracy. It should be noted that battery_position, rudder_angle and 
VBD signals correspond to the actuators directly controlling the UG. Hence, this suggests that 
the anomalies included in the test datasets are highly likely to have caused the actuators to 
operate differently than in normal scenarios.

All sensors
Table 2.5 presents the sensitivity study results on decimations of all sensors. Data from all the 
15 sensors are decimated simultaneously for the sampling intervals of 5 s, 10 s, 30 s, 60 s, 120
s and 240 s, respectively. Note that s is still deemed as ground truth. The minimum 
anomaly detection accuracy achieved is 90.2% for the sampling interval of 240 s, which 
suggests that the proposed anomaly detection system is insensitive to the data decimation 
settings.
Table 2.4: Sensitivity study results on individual sensor decimations.

Table 2.5: Sensitivity study results on decimations of all sensors.



ALADDIN Technical Report

Copyright © 2022 University of York

Page 51

Project
ALADDIN

2.8. Conclusions

This work presents an unsupervised anomaly detection system with an improved training 
procedure of existing BiGAN. Data reconstruction and discriminator feature losses are 
adopted as assistive hints to periodically guide effective training of the BiGAN-based anomaly 
detection system. A novel data augmentation strategy of multi-sensor time series data is 
proposed to capture the transient features within data. The anomaly detection system can 
provide a thorough evaluation of a dive profile using multiple data patches extracted from 
the profile and is flexible with dive lengths. Compared to the authors' previous work, this 
study has endeavoured to apply more signals with improved signal reconstruction capability 
provided by the enhanced BiGAN structure. Although the method is proposed for the anomaly 
detection of UGs, the workflow developed does not require application-specific features. 
Therefore, it can be adapted for other application scenarios with multivariate time series data, 
e.g., high-performance computing system anomaly detection and aircraft turbulence 
detection.

The proposed anomaly detection system is trained using two healthy Slocum G2 glider 
deployments. Synthetic sensor faults are injected to the training dataset to check the anomaly 
detection system performance. Real-world collected datasets are applied to test the 
proposed anomaly detection system. The test results suggest that the BiGAN-based anomaly 
detection has successfully detected anomalies caused by biofouling, bulky sensors, angle of 
list, losses of wings and strong disturbances, whilst without giving false detections for healthy 
deployment. The unsupervised anomaly detection system has achieved satisfactory anomaly 
detection performance over a fleet of underwater gliders with minimal training data 
preparation. A sensitivity analysis of the decimation settings has shown that the anomaly 
detection system is insensitive to the data decimation settings. The outcome of the work will 
support the over-the-horizon operation of marine autonomous systems within the National 
Marine Equipment Pool at the National Oceanography Centre. 

Although the system can highlight the anomalies on sensor readings, it can still be challenging 
for humans to accurately determine the types of anomalies, including known and unknown 
ones. An intelligent anomaly classification system will be developed to classify anomalies 
automatically using deep learning in further work. The unsupervised learning anomaly 
detection method proposed in this study requires only healthy deployment datasets, making 
it generic to different types of anomalies, even unknown ones. Such a unique feature also 
makes it ideal for annotating dive cycles with only deployment-level anomaly information. 
The annotated dive cycles can be further applied to train supervised or semi-supervised fault 
diagnostics models.
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3. Understanding

3.1. Introduction

This section focuses on the diagnosis for RAS. Part of the work, i.e. supervised learning with 
assistive labelling from BiGAN (Section 3.2) has been published in [75]. The work presented 
in Section 3.3 using transfer learning and domain adaption is being extended to journal 
articles with part of the results presented in Sections 4.2 and 4.3.

3.2. Supervised learning with assistive labelling from BiGAN

Introduction
Underwater Gliders (UGs) (Figure 3.1) are a type of Autonomous Underwater Vehicle (AUV) 
that are being used extensively for long-term observation of key physical oceanographic 
parameters [76]. They operate remotely at a low surge speed of approximately 0.3 m/s with 
deployments of several months [77]. However, developing Near Real-Time (NRT) anomaly 
detection and fault diagnostics systems for such vehicles remains challenging as decimated 
sensor data can only be transmitted off-board periodically during operations when the UG is 
on the surface.

Figure 3.1: Slocum G2 underwater glider with Ocean Microstructure.

As part of an ongoing collaboration, the authors have previously developed anomaly 
detection systems for UGs via different approaches. In [12], a simple but effective system was 
developed to detect the wing loss using the roll angle. In [14], system identification 
techniques were employed to detect changes in model parameters which further successfully 
deduced simulated and natural marine growth. Anderlini, et al. [78] further conducted a field 
test to validate a marine growth detection system for UGs using ensembles of regression trees. 
In [59], the use of a range of deep learning techniques was investigated to achieve over-the-
horizon anomaly detection for UGs. In [32], an anomaly detection system based on an 
improved Bi-directional Generative Adversarial Network (BiGAN) was prototyped to enable 
generic anomaly detection for different types of anomalies.

For UGs operated over the horizon, some faults can only be revealed when the faulty UGs are 
recovered. Also, it is not clear when the faults developed.  Some undetected faults can lead 
to critical failures and the loss of vehicle and/or data cargo. Therefore, it is essential to 
understand the actual causes of high anomaly scores during remote monitoring to allow 
operators to take appropriate mitigations to minimise subsequent risks and maximise the 
successful delivery of the remainder of the deployment. This work further compares the 
results acquired in [32] with other baseline approaches. In addition, a new supervised fault 
diagnostics method for UGs is proposed. The BiGAN-based anomaly detection system is 
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applied to estimate when the faults are developed, such that the training dataset for the 
supervised fault diagnostics model can be accurately annotated. The results suggest that the 
BiGAN-based anomaly detection system has successfully detected different types of 
anomalies, in good agreement with model-based and rule-based approaches. The supervised 
fault diagnostics system has achieved high fault diagnostics accuracy on the available test 
dataset.

Method
Figure 3.2 shows the workflow of the anomaly detection and fault diagnostics for underwater 
gliders using deep learning. This workflow comprises two parts, i.e. unsupervised anomaly 
detection and supervised fault diagnostics. The unsupervised anomaly detection system is 
developed to alert the operators about the occurrence of an abnormal vehicle status that 
deviates from the normal baseline operating pattern. The developed unsupervised anomaly 
detection system is applied to assist in annotating the datasets with anomalies, as the exact 
times when the anomalies developed are unknown. With this approach, the training dataset 
for the supervised fault diagnostics can be accurately annotated.

Figure 3.2: Workflow of the anomaly detection and fault diagnostics for underwater gliders using deep learning.

The supervised fault diagnostics system aims to indicate the UGs' operating status when NRT 
data is transmitted via satellite connection, i.e. whether the vehicles present normal 
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conditions or have developed a certain type of fault. Given a training dataset 
with training samples such that is the data patch ( matrix, where is the 
number of signals, is the number of time steps in one data patch) and is its corresponding 
label (i.e. fault class), the supervised learning algorithm seeks a function that 
predicts the unknown class of an observation , where and are the input and 
output space of , respectively. For training sample , a loss function is 
minimised to find the function , where is the predicted label of . The function is 
modelled with a neural network, as shown in Figure 3.3. The original input ( matrix) is 
flattened as the input of the neural network. Three fully connected layers (followed by their 
own batch normalization, LeakyReLU activation and dropout layers) forward propagate the 
features to a fully connected layer activated by SoftMax to output the predicted class. A cross-
entropy loss function is applied to the output of the last fully connected layer.

Figure 3.3: Neural network configuration for the supervised learning.

Datasets
Table 3.1 details the 11 Slocum G2 deployment datasets used in this study [32], [72]. The first 
two datasets collected by units 345 and 397 are applied to train the BiGAN-based anomaly 
detection system as those are normal deployments without any anomalies. The other 
datasets used for testing include one healthy deployment of unit 419, and eight deployments 
with anomalies including biofouling, Ocean Microstructure Gliders (OMG, which have a large 
sensor appendage mounted on the exterior of the hull), angle of list, loss of wings and strong 
disturbances. The detailed data processing procedures can be found in [32].
Table 3.1: The datasets applied for anomaly detection system training and testing.

Results
Figure 3.4 shows a sample of the validation process where only the rudder angle signal is 
artificially manipulated to its minimum value (-0.52 rad) and the anomaly detection has 
successfully annotated this anomaly. After learning the distribution of the training 
dataset, the model can output a high anomaly score that describes the degree of an anomaly.
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Figure 3.4: A verification sample with the rudder angle signal manually set to its minimum value while the other signals are 
unchanged. For the rudder angle sensor, the signal reconstructed by the BiGAN is distributed around 0 and matches the 
actual sensor reading, suggesting that the model has learned the distribution of the training data.

Figure 3.5 shows the anomaly detection results against the model-based and rule-based ones. 
It is worth noting that only seven deployments are compared here due to the availability of 
baseline results for the remaining deployments. The BiGAN-based anomaly detection system 
has correctly shown anomaly score trends in good agreement with the model-based and rule-
based methods for the seven deployments. Note that for some of the deployments (e.g. unit 
436: wing loss), only one baseline is presented, since the missing model-based method did
not correctly show the detection metric trend.



ALADDIN Technical Report

Copyright © 2022 University of York

Page 56

Project
ALADDIN

Figure 3.5: Anomaly detection results using BiGAN, compared with model-based and rule-based approaches.

Table 3.2 details the representative cycles selected from the datasets with the aid of the 
anomaly detection results. The chosen dive cycles are applied to the training, validation and 
test datasets for the supervised learning method. For each deployment, 50% of the selected 
cycles are randomly sampled to generate the training datasets, 25% of the cycles are applied 
to generate the validation dataset, and the remaining 25% of the cycles are applied to 
generate the test dataset. For each dive cycle, 100 data patches with 64 time steps are 
randomly sampled for both the training and test datasets. Note that there are 15 signals 
included in the original datasets. Therefore, the training, validation and test datasets include 
179,200, 89,600 and 89,600 matrices with corresponding labels, respectively.
Table 3.2: Dataset annotation using unsupervised anomaly detection results.
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The supervised fault diagnostics model is trained on the training dataset for 10 epochs, with 
the Adam optimiser and a learning rate of . The fault diagnostics accuracy on the 
validation dataset is 99.76%. Subsequently, the trained neural network is applied to the test 
dataset to detect and classify the anomalies. The overall accuracy of the model is 99.67% on 
the test dataset. Figure 3.6 shows the confusion matrix of the supervised fault diagnostics 
results on the test dataset, suggesting the model has achieved high fault diagnostics accuracy 
for the 6 types of faults considered, as well as healthy operating status.

Figure 3.6: Confusion matrix of the supervised fault diagnostics results on the test dataset.

Although high fault diagnostics accuracy has been achieved over the test dataset, the fault 
diagnostics model is trained with datasets collected from only a few deployments. Training 
the model with such a small dataset can lead to an overfitted model. An overfitted model 
could memorise features specific to an individual deployment or a particular vehicle, which 
could lead to degraded fault diagnostics performance in real applications. Due to limited data 
available, further investigations were not conducted. In future work, the training dataset will 
be enriched. In addition, automatic segmentation methods will be developed to annotate the 
deployment datasets.

Conclusions
This work has further extended the BiGAN-based anomaly detection system developed in [32]
to assist with the annotation of UG deployment datasets. The performance of the BiGAN-
based anomaly detection system has been compared with rule-based and model-based 
methods. The annotated deployment datasets were applied to train a supervised learning 
fault diagnostics model. With the limited availability of training samples of the different 
anomalies, the supervised learning model has achieved an accuracy of 99.67% in fault 
diagnostics. In further work, supervised and semi-supervised models will be developed based 
on larger datasets with better diversity.
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3.3. Transfer learning and domain adaption

This work proposes a novel fault diagnostics deep learning model to diagnose faults for 
Marine Autonomous System via domain adaption and transfer learning. The proposed model, 
i.e. Marine Autonomous System Net (MASNet), is applied to address the challenging fault 
diagnostics tasks for distinct types of underwater gliders that are under-observed and 
remotely operated in different regions and tasks by different institutions. Based on the 
improved Bidirectional Generative Adversarial Networks (BiGAN) developed in our previous 
study [32], we further extract invariant features from both the source and target domains, 
such that that model can detect unseen faults in the target domains with only a limited 
number of categories of data for training. The fault diagnostics results are evaluated against 
rule-based results. The MASNet show effectiveness in generalising invariant features present 
in the source and target domain datasets collected by distinct underwater gliders operated 
by different institutions in different regions hence achieving high fault diagnostics 
performance in the field test.

Problem statement

Figure 3.7: The source domain data is collected by devices labelled as in different missions and has different 
categories. The target domain data is collected by devices of distinct types in different deployments and can be operated by 
different institutes with distinct settings. The proposed MASNet learns from the source domain and target domain data to 
classify the categories of the test data which may not be present in the training data.

As shown in Figure 3.7, both the source and target domain training data are sparsely labelled. 
In the training data, the source domain includes categories denoted by a set , the target 
domain A includes categories denoted by a set , and the target domain B includes 
categories denoted by a set In the test data, the target domain A includes categories 
denoted by a set , and the target domain B includes categories denoted by a set . 
Note that:

3.1 
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3.2 

 

Namely, the source domain includes more categories, while the target domains only have a 
limited number of classes that can be applied to extract domain-invariant and category-
invariant features to classify both seen and unseen categories in the target domain. Note that 
the number of target domains can be expanded.

Method
Figure 3.8 details the schematic of the proposed MASNet, based on the improved BiGAN 
based anomaly detection framework developed in our previous work [32]. In addition to the 
BiGAN loss, discriminator feature loss and reconstruction loss, two additional losses are 
added to the framework. The feature clustering loss function aligns the features from the 
source and target domains encoded by . The classification loss is a typical cross-entropy 
function for classification tasks.

Figure 3.8: Based on an improved BiGAN-based anomaly detection model proposed in our previous study ([32], also see 
Section 2 , we add an additional classifier to the model. A feature clustering loss term is added to align the categorical 
features of the source and target domains, using the encoded latent information from the encoder .
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Datasets

Table 3.3 details the datasets of source and target domains. The source domain data 
comprises 10 datasets collected by Slocum G2 underwater gliders operated by NOC and one 
operated by PLOCAN. Seven types of operating status have been labelled manually with the 
anomaly detection results presented in [32]. The target domain data contains four different 
operating statuses, i.e. healthy, loss of right wing, loss of left wing and angle of list, which is 
collected in the project FRONTIERS in Mallorca, in collaboration with SOCIB. Only healthy
operating data collected by SOCIB glider is included in the training to represent the target 
domain. The other three simulated faults are applied to the fault diagnostics model 
performance. The data patches, i.e. the elements of both the training and test datasets, are 
augmented as described in [32]. Each data patch is a matrix, where and are the 
numbers sensors and timesteps. The selected values are and , considering the 
available common signals from both domains the results presented in [32]. Both the target 
and source domain datasets are augmented by randomly sampling 100 samples from each of 
the valid driving cycles.
Table 3.3: The source domain data applied in this study is measured by a number of Slocum G2 gliders over eleven 
developments. The source domain data is the most thorough data with six different types of faults and has been applied in 
[32]. The target domain data are collected by a Slocum G2 variant model operated by SOCIB in Mallorca. Note that the unit 
operated by SOCIB has an underline internal condition throughout tests done in Mallorca, which has likely shifted the data 
pattern collected by it further away from the ones operated by NOC.

Table 3.4 details the signals applied to augment the datasets of this study. Note that the 
signals names are unified to the notations included in the SOCIB datasets. The signals of roll 
rate, pitch rate, rudder rate and vertical velocity are derived from the corresponding signals. 
The sample interval is 5 s.
Table 3.4: Signals applied to augment the fault diagnostics datasets. The signals of roll rate, pitch rate, rudder rate and 
vertical velocity are derived from the corresponding raw signals.
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Results

Figure 3.9a details the fault diagnostics results of the proposed MASNet applied to the target 
domain data collected in the FRONTIERS project in collaboration with SOCIB (also see Section 
4.2 for the test settings and anomaly detection results using BiGAN). It is apparent that the 
MASNet has correctly detected the wing loss scenarios (in comparison with the rule-based 
method of using the mean roll angle difference between the ascents and descents shown in 
Figure 3.9b. In the early stage of the test deployment (until mid of 2021-07-07), the MASNet 
has correctly labelled the glider’s status as healthy. Note this data collected over this period 
has been applied to align the invariant features between the target and source domains. The 
three scattered points (angle of list) are the times when the pitch angle was manually changed. 
In the later stage of the test, the MASNet has correctly labelled the angle of list status 
(simulated by adjusting balancing pills on the starboard and port sides). The final stage is 
mostly labelled as either healthy or angle of list, which is mainly due to multiple incorrect trim 
and ballast settings were applied over this period, making the vehicle’s real status has never 
presented in normal scientific missions.

It is worth noting that without applying domain adaption procedures, using purely the data 
collected by NOC, extensive efforts that were made to detect the faults simulated in the 
FRONTIERS project did not achieve satisfactory fault diagnostics performance for a distinct 
glider operated by SOCIB with a minor internal oil leak. Extensive experiments suggest that 
aligning the invariant features between the source and target domains has significantly 
improved the fault diagnostics performance of the MASNet.

Nonetheless, as presented in Section 4.3, when the variance of data pattern between the 
source and target domains are insignificant, the classifier without domain adaption steps but 
with the encoder, generators and discriminator pre-trained by BiGAN shows reasonable fault 
diagnostics performance in two types of missions (mapping and profiling).
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(a)

(b)
Figure 3.9: Fault diagnostics results: (a) predicted operating status of the Slocum G2 UG operated by SOCIB in the 
FRONTIERS project test (also see Section 4.2), (b) rule-based fault detection using the difference of the mean roll angle 
during the steady-state portion of ascents ( ) and descents ( )) [12], which is particular sensitive in detecting faults 
caused by loss of wings but cannot indicate other faults correctly. The rule-based detection of wing losses results are used 
to assess the MASNet model performance in detecting wing losses. The fault diagnostics results are in line with anomaly 
detection results presented in Section 4.2.

Conclusions and future works

The fault diagnostics results presented in this Section suggest that proposed MASNet is 
effective in generalising invariant features present in the source and target domain datasets 
collected by distinct underwater gliders operated by different institutes in different regions 
hence achieving high fault diagnostics performance in the field test.

The method and results presented in this Section (3.3) are being extended to journal articles 
with more comprehensive details and comparative studies against existing studies. 
Additionally, semi-supervised elements (e.g. using MixMatch [79]) will be included in the 
journal articles to further address the impacts of limited and sparsely labelled training 
datasets.
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4. Verification and Operational Implementation

4.1. Introduction

This section presents the results that were obtained from two projects, namely FRONTIERS
project in Section 4.2 and FEATURE project in Section 4.3, where we verify the BiGAN
algorithm that we had developed on actual field test deployments. In particular, the tests on 
the FRONTIERS project were carried out by artificially replicating faults on the gliders, 
whereas for the FEATURE project, we showed that the algorithm also work on an AUV, a 
different type of vehicle via transfer learning.

In Section 4.4, we present the development being done for implementing a condition 
monitoring system and deploying the algorithms for operational usage. We also discuss about 
strategies to improve the robustness of ML systems running in production.

4.2. FRONTIERS test

Project information

Proposal reference number 21/1001599

Project Acronym (ID) FRONTIERS

Title of the project Fault detection, isolation and Recovery fOr uNderwaTer

glIdERS

Host Research Infrastructure SOCIB, ES

Starting date - End date 02/07/2021 - 19/07/2021 

Name of Principal Investigator Enrico Anderlini,

Home Laboratory

Address

Marine Research Group, Department of Mechanical 
Engineering, University College London

Roberts Engineering Building, London, WC1E 7JE, UK

E-mail address E.Anderlini@ucl.ac.uk

Test objectives
The updated aim of the project is to validate methods for the smart anomaly detection and 
fault diagnostics for underwater gliders. The project outcomes will help increase the reliability 
of these platforms and help over-the-horizon pilots to monitor the conditions of these 
systems.

The project aim will be achieved through the following updated objectives:

mailto:E.Anderlini@ucl.ac.uk


ALADDIN Technical Report

Copyright © 2022 University of York

Page 64

Project
ALADDIN

O1 Introduction of data-driven methods for the anomaly detection and fault diagnostics of 
MAS (as part of project ALADDIN funded by the Assuring Autonomy International Programme, 
a partnership of Lloyds’ Register Foundation and the University of York);

O2 Validation of the tools with the actual field test of an underwater glider for the following 
case studies:

• sudden wing loss;
• incorrect ballasting and trimming.

Main achievements and difficulties encountered
The project has successfully validated the introduced anomaly detection and fault diagnostics 
methods. The glider has been deployed, recovered and redeployed multiple times to simulate 
the loss of either wing, incorrect ballasting (through the addition or removal of weight pills) 
and incorrect trimming (through the addition or removal of the weight pills along the length 
of the vehicle as well as different settings of the internal battery position). Furthermore, the 
glider had additional intrinsic anomalies: slow leak in the thermal valve of the variable
buoyancy device, a small offset in the CTD sensor readings and high energy consumption 
levels. 

The simulated faults were correctly detected and identified, whilst the intrinsic smaller faults 
will provide additional training data to expand the system in the future. Validation of the 
diagnostics of the smaller intrinsic anomalies are not done as these anomalies were not 
present in the training data, obtained from many past glider deployments, used to train the 
model. Further verifications can be done by characterising the goals of a robotic autonomous 
system (RAS) along with the group of sensors and external data sources in use to the sensing 
capabilities that they could provide. This will help in defining the verification steps in terms of 
understanding how available features from training datasets would map to the sensing and 
understanding requirements of the RAS. This is especially useful when applying deep neural 
network (DNN) methods to cross-domain sensing and understanding capability.

The main difficulties encountered concerned the global pandemic, which prevented the UCL 
team to travel to Mallorca due to the constantly changing travel rules. However, this problem 
was solved thanks to the professionalism of the SOCIB team, their user-friendly data exchange 
portal and regular email exchanges or calls. Bad weather before the project start meant that 
the project actually began a few days later than expected.

Dissemination of the results
The project has been advertised on LinkedIn with two posts with 1,749 total views on 
23/07/2021 and to the AAIP.

Further planned dissemination activities involve:
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• Open-access publication of the collected data on the SOCIB data portal 
https://www.socib.eu/?seccion=observingFacilities&facility=glider, 
https://thredds.socib.es/thredds/dodsC/auv/glider/sdeep01-
scb_sldeep001/L0/2021/dep0036_sdeep01_scb-sldeep001_L0_2021-07-
02_data_dt.nc.html, 

• Publication of one collaborative journal article in the Journal of Field Robotics or IEEE 
Journal of Oceanic Engineering,

• Use of the results in up to three additional journal article publications as part of project 
ALADDAIN, https://www.york.ac.uk/assuring-autonomy/projects/unmanned-marine-
systems-safety/,

• Inclusion of the project outcomes within the AAIP’s Body of Knowledge entries 2.2.4.1 
– Verification of sensing requirements, 2.2.4.2 – Verification of understanding 
requirements, https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/, 

• Advertisement on SOCIB’s twitter account, 
https://twitter.com/socib_icts/status/1417784285264760833,

Further advertisement on the principal investigator’s LinkedIn account once the results are 
postprocessed.

Technical and Scientific preliminary Outcomes
The project mission is summarised in Figure 4.1, which shows the GPS coordinates of the 
glider during the deployment, the number of days spent at sea, the number of profiles 
undertaken, the distance covered, the maximum depth reached and the average surge speed.

Figure 4.1: Summary of the glider deployment for the FRONTIERS project.

https://twitter.com/socib_icts/status/1417784285264760833
https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/
https://www.york.ac.uk/assuring-autonomy/projects/unmanned-marine-systems-safety/
https://www.york.ac.uk/assuring-autonomy/projects/unmanned-marine-systems-safety/
https://thredds.socib.es/thredds/dodsC/auv/glider/sdeep01-scb_sldeep001/L0/2021/dep0036_sdeep01_scb-sldeep001_L0_2021-07-02_data_dt.nc.html
https://thredds.socib.es/thredds/dodsC/auv/glider/sdeep01-scb_sldeep001/L0/2021/dep0036_sdeep01_scb-sldeep001_L0_2021-07-02_data_dt.nc.html
https://thredds.socib.es/thredds/dodsC/auv/glider/sdeep01-scb_sldeep001/L0/2021/dep0036_sdeep01_scb-sldeep001_L0_2021-07-02_data_dt.nc.html
https://www.socib.eu/?seccion=observingFacilities&facility=glider
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As shown in Figure 4.2A, the test started at t0 (Figure 4.2B-a) and ended at t8 (Figure 4.2B-b).
The anomaly detection system based upon Bidirectional Generative Adversarial Networks 
(BiGAN) has successfully output anomaly scores over the test. The pitch angles for t0-t1, t1-t2, 
and t2-t3 were set as 30°, 18°, and 26°, respectively. The glider’s starboard wing was removed 
at t3 (see Figure 4.2B-c). At t4, the starboard wing was restored while the port wing was 
removed (see Figure 4.2B-d). At t5, the port wing was restored while the balancing weight 
setting in the wing rails was adjusted from left-2 & right-5 to left-5 & right-2 (each pill is 15.5 
g) (see the vehicle status in Figure 4.2B-e). At t6, the wrong battery position was applied. At 
t7, the battery position servo mode was set, and the balancing weight setting was changed to 
left-0 & right-3 (2 extra pills removed along the length of the vehicle in each wing rail, see 
Figure 4.2B-f). The glider was recovered at t8.

A data-driven anomaly detection system based on a BiGAN architecture with added hints was 
trained with data from deployments from the British Oceanographic Data Centre and the 
SOCIB portal. The system uses the decimated semi-real-time data signals from each dive of 
the glider sent ashore to calculate an anomaly score that can be used to determine whether 
anomalies are present on board the vehicle. Once trained, the system was validated using the 
data stream from the JERICO deployment. As can be seen in Figure 4.2A, as the 30° and 18° 
pitch settings were not included in the training dataset, high anomaly scores have been
incorrectly returned at the start of the deployment for normal behaviour. However, the 
system was able to clearly detect the loss of wing, as removing the starboard and port wings 
resulted in high anomaly scores of similar magnitudes. Additionally, relatively high anomaly 
scores can be observed from t5 to t8 for the incorrect ballasting and trimming. In conclusion, 
the simulated faults were correctly detected, validating the proposed anomaly detection 
solution, although further work is needed to address the false positive at the start of the 
deployment. This will be tackled through data augmentation.
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Figure 4.2: (A) anomaly scores over the test. (B) a: the glider at the beginning of the test, b: the glider before recovery at the 
end of the test, c: the glider with its starboard wing removed, d: the glider with its port wing removed, e:  incorrectly 
ballasted glider, f: the balancing weight setting for the simulated trimming fault.
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4.3. FEATURE test

Project information

Project Details

AGREEMENT No (1) EUMR-TNA-UPORTO-Local-03

Title Fault dEtection, isolation and recovery for AuTonomous 
UnderwateR vEhicles

Acronym FEATURE

Starting Date - End Date 16-08-2021 to 03-11-2021

Infrastructure Access / Use Case Details

Access / Use Case code UPORTO-Local

Applicant Institution

Name University College London

Country United Kingdom

Domain Academia

Principal Investigator

Name Enrico Anderlini

Email Address E.Anderlini@ucl.ac.uk

Team Members 

Name Davide Grande

Email Address davide.grande.19@ucl.ac.uk

Name Peng Wu

Email Address peng.wu.14@ucl.ac.uk

Project objectives
The project aims to develop a new method that detects, diagnoses and notifies the 
occurrence of faults on autonomous underwater vehicles (AUVs) via domain adaption and 
transfer learning (updated due to the global pandemic of COVID-19). The project outcomes
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will help increase the reliability of these platforms, thus contributing to the assurance of the 
operations of unmanned marine systems (UMS).

The project aims to achieve the following objectives:

O1 Development of the method for the detection of faults in the target domain using source 
domain data collected by similar but different AUVs and/or simulations

O2 Verification of the developed method using historical data

O3 Validation of the developed methods for two case studies with actual deployments of 
individual AUVs undertaking different tasks with emulated faults and normal operating status:

• a mapping AUV with stuck top and bottom vertical servomotors
• a profiling AUV with stuck top and bottom vertical servomotors 

Main achievements and difficulties encountered
A novel data-driven anomaly detection and fault diagnostics method has been developed and 
validated through field tests. The method is based upon an improved Bidirectional Generative 
Adversarial Network (BiGAN) but has been further extended to deal with smart fault 
diagnostics for UMS with limited training data via transfer learning, achieving high fault 
diagnostics accuracy in the target domain. More specifically, using historical data collected 
distinctive AUVs in different missions, the anomaly detection model has successfully notified 
the occurrence of anomalies; the fault diagnostics model built upon the anomaly detection 
model has achieved good fault diagnostics performance.

Further verifications can be done by characterising the goals of the robotic autonomous 
system (RAS) along with the group of sensors and external data sources in use to the sensing 
capabilities that they could provide. This will help in defining the verification steps in terms of 
understanding how available features from training datasets would map to the sensing and 
understanding requirements of the RAS. Additionally, this information can be added to the 
metadata to enable future improvement of the system when updating the model as new 
datasets and data sources become available. These steps are particularly useful when 
applying deep neural network (DNN) methods to cross-domain sensing and understanding
capability. 

Two main challenges were encountered:

• Due to the global pandemic of COVID-19, the team could not travel to Porto to deploy 
and test the originally proposed algorithm run in real-time on the on-board CPUs of 
the LAUVs. Therefore, the aim & objectives have been updated to develop and 
validate the novel data-driven deep learning method (see Section 2.1). 

• The initial deployment of lauv-xplore-1 experienced a failure of the vehicle's CPU. 
Consequently, the mission was postponed to November 2021. The subsequent test 
was completed using a similar but with a different LAUV, i.e. lauv-xplore-2, which was 
beneficial to test the developed model performance in the target domain.
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Dissemination of the results
The methods and outcomes of the project will be published in a manuscript in a high impact 
journal, namely the Journal of Field Robotics. Additionally, the results will be presented in a 
seminar internal to UCL open to undergraduate and postgraduate engineering students. 
Furthermore, the outcomes of the project will be used to influence the future regulations of 
UMS by contributing to the body of knowledge on assuring autonomy as part of project 
Assuring Long-term Autonomy through Detection and Diagnosis of Irregularities in Normal 
operation (ALADDIN) funded by the Lloyd’s Register Foundation.

Technical and Scientific preliminary Outcomes
The project aims to test the anomaly detection and fault diagnostics models developed for 
UMS using transfer learning and domain adaption. The models are trained to work in the 
target domain, i.e. previously unseen AUVs undertaking unseen tasks, using the source 
domain data collected by similar but distinctive AUVs and/or simulations. Figure 4.3 shows 
the Neptus mission plans for the 10 test runs (5 for mapping, the other 5 for profiling) with 
normal behaviour, and emulated faults (stuck top vertical servomotor and stuck bottom 
servomotor), implemented on 3 November 2021, using lauv-xplore-2. The mission data was 
applied to test the anomaly detection and fault diagnostics models that have been trained 
primarily using the source domain data collected on 16 August 2021, using lauv-xplore-1. Note 
that the data collected in 115641_mappingv2 (a mapping mission) appeared incomplete and 
was not included in this report.

(a) (b)
Figure 4.3: Neptus mission plans for the mapping (a) and profiling (b) runs.

Figure 4.4 details the anomaly detection results of the mapping (a) and profiling (b) test runs 
on 3 November 2021. Missions 114025_mappingv2 and 121217_mappingv2 did not include 
any anomaly; therefore, low anomaly scores can be observed for the two missions. Missions 
132840_mappingv2-faultS3 and 134517_mappingv2-faultS0 were completed with emulated 
faults, i.e. stuck top vertical servomotor and stuck bottom vertical servomotor, respectively. 
Apparent high anomaly scores can be observed for these two missions. For the profiling runs, 
stuck vertical servomotors (either top or bottom) faults have been emulated in the missions 
of 152318_profiling_1200rpmv3-faultS3, 161057_profiling_1200rpmv3-faultS3v2 and 
155611_profiling_1200rpmv3-faultS0. Note that the simulated faults are not always 
observable as the servo motors are not always required to be running, i.e. only required for 
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some manoeuvring operations. Consequently, sudden anomaly score spikes can be observed 
at the times when a servo motor is supposed be operating freely. The BiGAN-based anomaly 
detection model had successfully notified the anomalies, matching the test logs.

(a)

(b)
Figure 4.4: Anomaly detection results of the mapping tests (a) and profiling tests (b).

Based upon the tested anomaly detection model, classification layers were added to form the 
fault diagnostics model. The test data collected on 16 August 2021 were labelled and 
subsequently applied to train the fault diagnostics model. Note that during fault diagnostics 
model training, the original BiGAN component parameters were frozen, i.e., only the 
classification layers were updated. The BiGAN components extract essential features from the 
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input data and improve the fault diagnostics performance. Figure 4.5 presents the preliminary 
fault diagnostics results for the mapping and test runs. Without hyperparameter tuning, the 
model has achieved reasonable performance. In the planned manuscript, the results will be 
updated with performance tuning, as well as comparative studies with existing methods.

(a) (b)
Figure 4.5: Fault diagnostics confusion matrices for the mapping (a) and profiling (b) test runs.
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4.4. Operational Condition Monitoring System

Introduction
The Marine Autonomous and Robotic Systems group (MARS) at the National Oceanography 
Centre (NOC) in Southampton, UK, has one of the world’s largest fleets of marine autonomous 
systems (MAS) used for scientific and industrial purposes.  The fleet, as seen in Figure 4.6, 
comprises both short-range autonomous underwater vehicles (AUVs) and remotely operated 
vehicles (ROVs), as well as long-range autonomous surface vessels (ASVs) and underwater 
gliders (UGs), piloted over-the-horizon by remote expert operators.

Figure 4.6: MARS fleet with the RRS Discovery by the National Oceanography Centre.

This large and diverse range of vehicle fleets increases operational complexity and creates a 
demand for scalable and autonomous approaches for fleet monitoring and management 
during operations. To address this need, several approaches were studied and developed for 
UGs to detect adverse behaviours and monitor the condition of the remote vehicles [12], [14], 
[28], [32], [33], [54], [59], [75], and [78], e.g., to detect biofouling, sensor anomalies, and wing 
loss by analysing past vehicle data. These algorithms include heuristics, model-based, and 
data-driven methods such as machine learning (ML) and deep learning

The advancements of anomaly detection techniques in the marine autonomous systems 
(MAS) domain enable greater autonomy of the increasingly long-range and long-endurance 
operations of UGs and improved data delivery. They allow glider operations to be more 
efficient and cost-effective, enabling one pilot to supervise the operation of many vehicles, 
detecting issues before they result in loss of data or the vehicle itself, and enabling early 
mitigating actions to be implemented. Whilst existing research has proven very promising 
when analysing past data downloaded from the vehicles upon recovery, to fully utilise data-
driven techniques within real-world real-time operations, key assumptions made in the 
original works, such as volume and resolution of data, need to be revisited.  
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The integration and adoption of these technologies into piloting systems and standard 
operating procedures also require thorough testing and analysis to ensure the continuous 
robustness and reliability of the system. In this section, we discuss the key challenges 
encountered when translating data-driven approaches to real-world UG operations and 
present a general ML pipeline, as a framework designed to ease the integration of such 
approaches into MAS piloting tools, creating future scalability.

Underwater Gliders Operation
UGs at NOC are piloted through a web-based command and control interface (named ‘C2’)
[37], [38]. The UGs communicate to the C2 via Iridium satellite, which requires the UGs to 
resurface and stay afloat throughout the low-bandwidth data transmission process. 
Communicating with the satellite is costly in terms of both data transmission fees and battery 
power. Importantly, extended periods spent on the surface also put the vehicle at increased 
risk, e.g., through increased exposure to shipping routes. Together, these constraints heavily 
restrict the amount of information that the UGs can send to the base station. Therefore, raw 
data from the UGs are decimated or down-sampled before transmission as near-real-time 
(NRT) data to the C2. The full datasets (known as recovery-mode data) are often only available 
upon physical recovery of the vehicle. The NRT data enables scientists and pilots to observe a 
small sample of scientific and engineering data collected by the vehicle for monitoring and to 
inform any interventions.

At present, pilots monitor the decimated NRT data manually via the C2 user interface. 
Correctly interpreting the behaviour of the UGs requires significant pilot expertise.  As a result, 
the training requirements are significant, especially for a pilot to operate multiple vehicle 
types and models within the fleet.

Challenges
Utilising the decimated NRT data for condition monitoring with machine learning proves to 
be challenging. To date, most ML algorithms designed for MAS are reliant on high-resolution 
recovery-mode data and additionally, larger quantities of samples for deep learning 
algorithms. Consequently, the decimation process can significantly affect the accuracy of the 
algorithms, reducing their suitability for online usage. Running these algorithms onboard the 
UG is not currently considered to be an option, due to both power requirements significantly 
reducing endurance and limitations on computational resources. Thus, it is necessary to 
either achieve an acceptable accuracy when running these algorithms on decimated data or 
to develop energy-efficient algorithms that can run onboard the vehicle. 

To build operator confidence and thus aid the adoption of data-driven approaches, we also 
need to maintain a consistent and comparable performance of the condition monitoring 
algorithms between different deployments of the UGs. The performance of the algorithms 
may vary depending on mission specifications such as dive profiles and data decimation 
requirements. The accuracy can also be affected by numerous other factors in a dynamic 
environment, along with anomalies novel to the condition monitoring system. The objective 
of optimising the algorithms' performance may even be dependent on the stakeholder 
preferences or application-specific requirements, such as energy efficiency, low latency, 
interpretability, or scientific data collection.
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Therefore, as a requirement, the ML systems or infrastructure design will need to have the 
ability to support frequent and continuous updates and deployment of ML algorithms for 
production use. However, these challenges are not unique to the MAS domain. Deployed ML 
algorithms in a production environment will encounter different distributions of data in the 
real-world, unseen during training. Developers will need to ensure that the algorithms can 
generalise well in a production environment and, in the long run, tackle the issue of drift in 
the performance of the algorithms. Moreover, the software engineering field also provides 
best practices that could be incorporated into an ML systems design such as the DevOps 
process and the continuous integration and continuous delivery (CI/CD) development 
philosophy.

ML Pipeline
Considering the identified challenges and requirements, we have developed an ML pipeline,
designed for the MAS domain, to facilitate ML adoption for condition monitoring. The ML 
pipeline manages the data flow and deployments of ML algorithms for both research and 
production environment. Each component or task (e.g., data ingestion, data validation, data 
pre-processing, model training, model validation, and model deployment) in a pipeline is 
designed to be modular with clear and general interfaces between them. This enables
continuous integration and improvement, while also allowing open collaboration where each 
component can be developed and owned by developers, scientists, and engineers with 
different expertise.

There can be multiple pipelines running in production for different algorithms or processes to
ensure a more streamlined approach for enabling continuous monitoring and maintenance 
of algorithms in production. Figure 4.7 show one example of how a pipeline can be designed 
for deployed algorithms. Another example would be another pipeline to train and update the 
diagnostics models with newly obtained datasets or a pipeline to monitor the generalisation 
performance of the algorithms. 

Figure 4.7: Example pipeline for an anomaly detection and fault diagnostics system.
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The ML pipeline design enables a more efficient and structured workflow for designing, 
debug-and-tracing, validating, and verifying ML models for researchers and developers. 
Furthermore, as we validate this process further during field operations and as the pipeline 
matures, this infrastructure will help accelerate the progress of designing and deploying 
more complex ML algorithms.

C2 Automated Piloting Framework Architecture
NOC C2 system has an Automated Piloting Framework (APF) [38] which manages the high-
level settings of autonomy and piloting algorithms. The APF is a server-side autonomous 
piloting framework for long-range marine autonomous systems (MAS) which automates
piloting routines and SOPs for a diverse range of MAS, with user-adjustable autonomy. The 
APF also maintains a level of human oversight and accountability over MAS operations. 

Whilst this is not a requirement for implementing and deploying ML models to production,
the anomaly detection and fault diagnostics system has shown to be highly essential for
autonomous operations, especially on heterogenous and multi-vehicle deployments.
Therefore, we had designed and integrated the ML pipeline to work with the APF on NOC C2
as shown in Figure 4.8.  

 
Figure 4.8: ML Pipeline with APF on C2 system architecture.

We have opted for the Kubeflow open-source ML platform to host the pipelines and 
orchestrate the ML workflows that we have in production. Kubeflow fits nicely into the 
microservices architecture of the NOC’s C2 system, while also providing ample features that 
are useful for developing and deploying ML algorithms. Figure 4.9 shows the user interface of 
Kubeflow with an example pipeline.
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Figure 4.9: Kubeflow user interface with example pipeline.

Notifications are also set up through the C2 notification service to notify pilots of events and
alerts via email or text messaging, to utilise the continuous monitoring feature of the APF and 
ML pipeline. This notification feature allows pilots to run more complicated MAS operations 
and focus on meeting the science goals of the deployment without needing to monitor the 
C2 constantly. Additionally, we also collect feedbacks and piloting logs from pilots through 
the log entry feature as shown in Figure 4.10. Pilot’s will be able to add notes or labels to 
noteworthy events that occurs throughout a deployment. These logs will be essential when
generating new annotated glider operation datasets to train and improve algorithms for the 
APF in the future.
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Figure 4.10: Piloting log entry feature user interface on C2.



ALADDIN Technical Report

Copyright © 2022 University of York

Page 79

Project
ALADDIN

5. Project management

5.1. Summary

The project was managed by the PI at UCL with UCL’s mentor Co-I providing guidance when 
required.

To ensure the project achieves the desired impact on the regulations and operational 
practices of MAS, a steering committee was created, which included representatives from LR, 
the leading classification society for MAS, MCA, the key regulator for MCA in the UK, BOM, an
exploration company and Dr Alexander Phillips, Head of Marine Autonomous Systems 
Development at NOC. In addition, the LRF Assuring Autonomy team at the University of York 
were part of the project stakeholders. The stakeholders met three times during the project 
duration to:

• Initially discuss the gathered MAS requirements and discuss the proposed solution for 
the autonomous detection system (M1),

• Update regulators on the development of the autonomous diagnosis system and 
determine how to approach WP4 (M2) (see Section 5.2),

• Inform stakeholders’ decisions on the regulation of MAS (M3).

The completion of Body of knowledge is summarised in Table 5.1. 
Table 5.1: Summary of Body of Knowledge.

Objective 
number Description of output Guidance document

2.2.1.1 Defining sensing requirements Submitted in 03/2021, also attached to 
the final project report.

2.2.1.2 Defining understanding requirements Submitted in 11/2021, also attached to 
the final project report.

2.2.4.1 Verification of sensing requirements
Draft submitted in 11/2021, updated 
version attached to the final project 
report.

2.2.4.2 Verification of understanding requirements
Draft submitted in 11/2021, updated 
version attached to the final project 
report.

3.1.1 Identifying sensing deviations Submitted in March 2021, also attached to 
the final project report.
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5.2. Project ALADDIN: Workshop – 8th June 2021

We were delighted to welcome 31 collaborators from all over Europe to the first workshop
for project “Assuring Long-term Autonomy through Detection and Diagnosis of Irregularities 
in Normal operation (ALADDIN)” on 8th June 2021. The workshop covered challenges and 
solutions with fault-tolerant operations of marine autonomous systems. We took advantage 
of the technology and moved from plenary sessions for the introduction to the project and 
panel discussion into breakout groups for detailed discussion, giving each of us a chance to 
meet and talk with people from a variety of disciplines, backgrounds, and domains. 

This report provides a short summary of the interesting and informative discussions held 
during the workshop.

If you are interested in learning more about the work and outcomes of ALADDIN or in 
collaborating with us during or beyond the project, please feel free to contact us at 
E.Anderlini@ucl.ac.uk and catherine.harris@noc.ac.uk.

Panel Session
The panel consisted of the following four experts:

Joseph Morelos, Technology Innovation Manager, Lloyd’s Register Marine and Offshore,

Dr Olga Fink, Assistant Professor in Intelligent Maintenance Systems, ETH Zürich,

Prof. Ralf Bachmayer, Professor for Marine Environmental Technology and Deep-sea Engineering, 
MARUM, University of Bremen,

Roland Rogers, former Advisor on Marine Law and Policy, National Oceanography Centre.

13 questions were posted on Slido by the audience, receiving 31 likes and engaging 30 participants. 
The following three questions were discussed by the panel.

mailto:catherine.harris@noc.ac.uk
mailto:E.Anderlini@ucl.ac.uk
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1. What main steps are needed to transition from human-in-the-loop to human-on-the-loop 
operations of marine autonomous systems? The consensus was that there is no single 
solution, as the transition is really dependent on the operational environment, with strong 
differences between congested waterways and the open ocean. From a regulatory 
perspective, the differences in requirements between human-in- and human-on-the-loop 
need to be defined explicitly. 

2. What are your thoughts on scaling to larger and more complicated systems with regards to 
the amount of data required for a data driven methodology? A pure data-driven solution is 
difficult, as vessel pilots and/or crew are unlikely to record failures consistently and 
verification is challenging. A hybrid solution can enhance performance, combining dynamic 
models with data-driven methods to improve fault diagnostics performance. Hierarchical 
methods with case-based algorithms are an interesting research direction. Scaling to complex 
vehicles is challenging, as behaviours need to be reliable.

3. What about the transparency of autonomous systems and explainable AI? Significant work 
is being done on explainability in the area of machine learning and computer vision, as this is 
a requirement for certification. The hybrid approach can improve the interpretability of the 
algorithms through physics induced learning, helping increase trust in the results and 
decisions made by the model. Structured metadata is needed for the validation of the models 
and to inform operators. A measure of transparency can be the ability to reconstruct errors. 
Standardised methods for demonstration are needed, but it is even more important to define 
what best practice is so as to aid accident report investigations in the future. The best advice 
is to document the demonstration work done to date to create legal precedent.

Breakout Room 1 (12 participants)
12 questions. Identified priority challenges and solutions: 

1. Deep understanding of technology and its 
transparency, explainability both for 
experts, users, regulators and general 
public. Classification of marine autonomous 
systems based on roles, applications and 
size.

2. Importance of data sharing. Creation of 
standardised data and metadata formats 
based on existing ontologies and 
vocabularies for conventional ships, 
considering the interoperability and integration of different system types. 

3. Standardisation across the industry to enable interoperability. Standardisation of 
the machine interface needed to help pilots’ training with and operating 
heterogeneous systems. Proving the system works is key.

4. Digital twins: how to prove that a system works well. Uncertainty needs to be 
quantified and regulators are uncomfortable making decisions purely on synthetic 
data due to the compounding of errors. For remotely operated vehicle development, 
hardware twins based on hardware-in-the-loop solutions are an interesting solution 
to improve verifiability. 
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5. Closing the loop and deciding and acting onboard, transferable autonomy, 
computational and other resources constrain (on-board vs remotely control). Clear 
rules and boundaries are fundamental for regulators. The operator can be asked to 
make the decision on critical tasks. Models are limited so that prioritising what needs 
to be predicted on board is important. At present, reliability and trust are the real 
challenge.

Breakout Room 2 (12 participants)
15 questions on Slido with 23 votes. Identified priority challenges and solutions:

1. How do you find the balance between 
using direct sensors vs sophisticated 
algorithms for failure detection? The 
balance depends on the complexity of the 
system and a scalable, transparent 
solution is possible with hybrid methods. 
There are no specific regulations on sensor 
selection at present, so more work is 
needed. Ideally, a metric needs to be 
specified to guide the selection. The design 
should be based on functionality and be an 
iterative process: design, test, adapt.

2. Too many failure modes. Focus on the critical failure modes. Understanding the root 
cause is not key to operations, but it is important for maintenance.

3. Transfer learning from one system to another. Domain adaptation for transferring 
models between different vehicles and/or operating conditions. However, there are 
no guarantees. Abstracting the system’s behaviour and recollecting some data for the 
new system can help.

4. Limited underwater communication. Event driven and with data compression and 
standardisation. Open frameworks a solution, but cybersecurity is important.
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